
Open Sesame!: A Look at Personal Assistants�Michelle A. Hoyle and Christopher LuegAI-Lab, Department of Computer ScienceUniversity of ZurichWinterthurerstrasse 190, CH-8057 ZurichTel. +41-1-257 4577 Fax +41-1-363 0035fhoyle,luegg@i�.unizh.chAbstractSoftware agents, or softbots, are supposedly intelligentprograms that assist the user in performing repeti-tive, boring, and time-consuming tasks. An overviewof software agents, with special attention focused onthe so-called personal assistants, is presented as anintroduction. Following that, an in-depth look at oneof the �rst commercially available intelligent agentsOpen Sesame!, a personal assistant for managing theMacintosh desktop environment, is presented. Theexisting intelligent agent paradigms, we argue, breakdown when it comes to actively helping the end userbecause of 
aws inherent in the current approaches tointelligent agent design. To that end, we discuss thereasons why this is, particularly with respect to OpenSesame!, and promote the notion of situatedness tobe taken into account more seriously for developingsoftware agents that actively support the user for theduration of the task at hand. As an example for amore situated approach to personal assistant design,a quick overview of a project to develop a personalassistant for news �ltering is discussed.IntroductionIn the following we report on several months experi-ence with one of the �rst commercially available soft-ware agents Open Sesame!, a personal assistant forthe Macintosh computer. We start initially with anoverview on software agents, focusing on personal as-sistants. Following that, we brie
y introduce OpenSesame! and present observations made during a ninemonth period of daily use of the agent. We discussthese observations with respect to user modeling andsituated action, and propose an alternative approachto agent design which is inspired by two years of workon Situated Design, a methodology for designing com-puter systems being developed in our lab over the past�Proceedings of the International Conference on thePractical Application of Intelligent Agents and Multi-AgentTechnology (PAAM 97) London, 21.{23.4.97, pp. 51{60.

few years. To illustrate our points we describe a situ-ated approach to Usenet News �ltering, where the useris actively supported during the �ltering task. Finally,we conclude by reiterating the lessons the last decadeof intelligent agent design has taught us and look to-ward a more realistic future involving agents that workhand-in-hand with their human counterparts.Software AgentsCurrently the limelight of public and scienti�c inter-est is focused on software agents, also called softbots,with many new commercial products being releasedthat supposedly make use of arti�cial intelligence tech-niques. Even entire issues of popular science maga-zines have been devoted to the topic [c.f. Scienti�cAmerican, September 1995]. Unfortunately, with allthis publicity, software agents are being hyped at adangerously high level due to overblown and partlyunrealistic expectations (Norman 1994; Jennings &Wooldridge 1996). Therefore, it is necessary to care-fully inspect that we can realistically expect from soft-ware agents in terms of performance and responsi-bilities. Within the agent community itself, there isno yet commonly agreed upon de�nition of what ex-actly constitutes an agent. One central point, however,seems to be autonomy, or the agent's ability to con-trol its own behavior to a certain degree (Foner 1993;Jennings & Wooldridge 1996; Etzioni, Lesh, & Segal1994). Other points mentioned in the literature, e.g.,(Jennings &Wooldridge 1996), are so-called social abil-ities such as the ability to exchange data with otheragents, responsiveness to the environment, and proac-tiveness.Nevertheless, it is still unclear what distinguishessoftware agents from other computational entities, e.g.,processes in operating systems or objects in object-oriented languages. Some researchers view agents asbeing conceptually more abstract entities than objects(e.g. (Shoham 1993)). Others classify computationalentities as agents depending on the tasks they are to



complete; for example, interface agents that aid a useror personal assistants. The classi�cation of entitiesas agents according to their computational complexity,i.e., as gopher agents, service performing agents, and\predictive" agents (Jennings & Wooldridge 1996), isalso commonly used.Application areas for software agents range from dis-tributed arti�cial intelligence (DAI) (Rao & George�1995;Wooldridge & Jennings 1995a) to interactive sim-ulation environments (Tambe et al. 1995) and enter-tainment (Mock, Lawton, & Hoyle 1996). In the con-text of increasing interconnectivity, mobile computingis of increasing interest (Harrison 1995). Mobile agentsare capable of roaming entire networks and travelingfrom one machine to another (Coen 1994; Gray 1995;Gray, Rus, & Kotz 1996; General Magic, Inc. 1995;Sun Microsystems, Inc. 1996). Other recent ap-proaches to software agents are strongly in
uencedby Arti�cial Life, where biological tenets of evolutionand genetics are applied to the development of agents.The application of arti�cial life techniques to an infor-mation �ltering problem produced Amalthea (Moukas1996), an agent capable of �ltering through onlineWWW documents. Comprehensive overviews of soft-ware agents in general are available from Wooldridgeand Jennings (Wooldridge & Jennings 1995b) andNwana (Nwana 1996).Since agents are being unrealistically hyped, thechallenge is to select a task that is both realisticallysolvable and of signi�cance to real users. Therefore,this paper focuses on personal assistants, both in factand in theory.Personal AssistantsWith the advent of graphical user interfaces (GUI),direct manipulation has become the dominatingmetaphor in human-machine communication, i.e., theuser must initiate all tasks explicitly and monitor allevents (Maes 1994a). In recent years, the idea of per-sonal assistants supporting humans in their work hasemerged. The primary thrust of this trend is thatcomputer programs take over boring, or repetitive andtime-consuming tasks in order to increase human pro-ductivity and creativity.The main application areas so far are in helping hu-mans to cope with supposed information overload andto assist users in performing repetitive, common tasks.Information �ltering and information seeking are twoapproaches to deal with information overload causedby modern communication media like Usenet, email,or the World Wide Web (WWW). Information �lter-ing tries to reduce the amount of incoming informationto a comfortable amount by the application of informa-

tion retrieval methods. An example of such an appli-cation is Letizia, a WWW �ltering agent developed atthe MIT Media Lab by Henry Lieberman (Lieberman1995). Letizia attempts to infer from documents theuser has examined what other currently accessible doc-uments might be of current interest to the user, wherecurrent is de�ned by some degradation function. Shecan then make recommendations, which the user mayor may not heed which provides a type of feedback asto the helpfulness of the suggestion.Information seeking aids the user in �nding inter-esting information, which grows increasingly di�cultfor a user because of the large amount of materialnow available electronically. The goal here, then, is tosearch for interesting information automatically to re-lieve the user of tedious search tasks, e.g., (Balabanovi�c& Shoham 1995; Armstrong et al. 1995; Lieberman1995) and, of course, WWW search engines1.Email handling and meeting scheduling are examplesof applications to help users in performing repetitivetasks. The former allows for the automatic forwarding,storage, and deletion of electronic mails, freeing theuser from the necessity of coping with electronic junkmail (Denning 1982), or performing repetitive taskssuch as storing mails from a mailing list or deletingunwanted requests. A personal assistant for meetingscheduling incorporates an agent who can negotiatea meeting in line with the preferences of its owners.Such an assistant was developed at AT&T Bell Labsby Henry Kautz and Bart Selman (Kautz et al. 1994;Kautz, Selman, & Coen 1994). KautzBot and Selman-Bot, the names for their scheduling agents, commu-nicated with other agents via email and attempted toautomatically negotiate an acceptable meeting time forall involved participants. Methods for both these ap-plications include user-de�ned models of interest, e.g.,rule-based kill �les or email �lters, and automaticallyacquired user models.Other approaches to assisting users belong to theclass of human-computer interaction (HCI). Here theidea is to monitor user activities and to detect repet-itive sequences. Examples range from simple purelyevent-driven approaches like macro recorders to morecomplex approaches doing some processing to uncoverrepetitive tasks like Eager (Cypher 1991). Most peo-ple are already familiar with macro recorders whichappear in many text editors and word processors. Ap-plications such as Eager analyze a collection of accu-mulated events and attempt to deduce a pattern thatmight be automated out of the collection. Both thesetypes of applications tend to be quite limited in whatthey can accomplish as the algorithms driving them1See (Koster 1996) for a comprehensive overview



Figure 1: Microsoft Word's calendar \wizard"are very literal minded, not permitting much devia-tion from what was recorded originally, making use ofexplicit keywords and so forth.Most of the above approaches are still within therealms of academia; however, some beta-releases ofacademic products are available to the public. Forexample, the MIT Media Lab's email �ltering agentMaxims, which allows the agent to contact otheremail agents for clues about how to handle pieces ofemail if there are no precedence rules for the cur-rent piece of email (Lashkari, Metral, & Maes 1994;Maes 1994b), is available as a beta-release. Commer-cial products have made use of some more complexapproaches to provide so-called assistants, or wizards,to monitor user activities in modern word processorsand spreadsheets and propose enhancements or fasterways of accomplishing tasks in the case of ponder-ous behaviour. For example, Microsoft Word provides\wizards" (See Figure 1). A wizard is just a templatethat helps the user create particular types of docu-ments quickly by answering some questions. In orderto create a calendar document, the user is asked if theywant boxes around the calendar, which of three titlebanners they want, etc. One of the �rst commerciallyavailable \intelligent software agents" (Charles RiverAnalytics 1996) was Open Sesame! for the Macintosh,which we describe in the next section and report onseveral months of experience with the agent.Open Sesame! { A CommerciallyAvailable Software AgentThe commercially available software package OpenSesame! from Charles River Analytics was announcedas being the �rst learning assistant for the Apple Mac-intosh and Microsoft Windows (Charles River Analyt-ics 1996). Its task is to \eliminate mundane, time-consuming tasks so that every minute you spend atyour computer is productive." Open Sesame! observes

Figure 2: Open Sesame's preferencesuser activity and learns which tasks the user performsrepeatedly. It then performs these tasks automatically.Charles River Analytics expects intelligent agents to\radically change the way we use computers, allowingsoftware to be an assistant to the user." They even ex-pect that \the impact of software agents on personalcomputing can be equal to, if not greater than, theimpact that graphical user interfaces on personal com-puting when they replaced command line user inter-faces."The 1.1 version of Open Sesame! tested requires anApple Macintosh with MacOS 7.0 or higher. Tests wereperformed using a Macintosh Quadra 700 with MacOS7.01 and 8 megabytes of mainmemory and Power Mac-intosh 8100 with MacOS 7.5.3 and 16 megabytes ofmemory. Both computers were used frequently for of-�ce work, email and Usenet news handling, and webbrowsing. The system con�gurations also included,among other things, commercial packages like a wordprocessor, a spreadsheet, a newsreader, an email pro-gram, and a web browser. Both computers are con-nected to a LAN via Ethernet, and from there to theInternet.Open Sesame! observes user activity by monitor-ing Apple events2 and inferring repetitive patterns. Itsends Apple events directly to the Finder and script-able applications without using the AppleScript3 en-gine. Open Sesame! distinguishes between time-based2Apple events are high-level process instructions thatcan be sent to almost any process running on a Macintoshunder a MacOS 7.x or greater environment. At a minimum,most applications support the ability to start, quit, andopen and close a �le through Apple events.3AppleScript is Apple's language for the exchange ofdata between applications through Apple events.



Figure 3: A suggestion by Open Sesame!and event-based triggers. A time-based trigger meansthat Open Sesame! observes a certain user action re-peatedly at the same time, e.g., every Monday at 9:00am or every full hour. An exact match is not required.9:00 am also covers some minutes before or after 9:00am. An event-based trigger means that Open Sesame!observes a sequence of certain desktop actions repeat-edly, e.g., opening a folder after closing Eudora. Fig-ure 2 shows some preferences o�ered by Open Sesame!.The user can choose a certain degree of anthropomor-phization (e.g., noti�cation by a female voice), a con�-dence threshold, and user actions to be considered forlearning.The manual for Open Sesame! mentions that someneural learning mechanism is used but does not givefurther explanations as to what kind of neural net-work or which learning rate is used. (Caglayan et al.1996), however, claim that Open Sesame! makes use ofa variation of the adaptive resonancy theory-2 (ART-2) algorithm of Carpenter and Grossberg (Carpenter& Grossberg 1987). The implementation of the ART-2 algorithm allows Open Sesame! to monitor and torecognize patterns relating to the opening and clos-ing of documents or folders; running and quitting ofapplications; user preferences with respect to hiding,showing, and arranging various objects in the desk-top environment; and user preferences with respect todesktop management, startup items, and objects oc-curring in the Apple Menu \. . . through competitive�ltering of patterns for �nding the `best match' cate-gory, combined with top-down template matching fordetermining if the best match is `good enough."'The user is able to edit suggestions (see �gure 3)made by Open Sesame!. The program always askswhether the user welcomes the actual suggestion atall. If the user indicates that the suggestion is un-acceptable, the program promises never to make thatobservation again. If the user welcomes the sugges-tion, then the user is invited to modify the instruction

Figure 4: Manipulation possibilities o�ered by OpenSesame!suggested by Open Sesame! prior to the suggestion be-ing incorporated into Open Sesame!. Figure 4 showsthe facilities to tune the instruction, e.g., the status ofthe instruction at all, the time of the suggested action,and the requirement of con�rmations prior to execu-tion of the instruction. A tuning facility is provided ina rule-based manner. Unfortunately, the manual doesnot mention how these manually modi�ed tunings areconsidered by Open Sesame!Open Sesame! was tested on the Apple MacintoshQuadra 700 and a Power Macintosh 8100 for a pe-riod of more than 9 months. During this period, OpenSesame! made 129 di�erent suggestions (see �gure 5for some examples). 70 suggestions were related to pro-grams installed on the computer (31 time-based, 39event-based) and 59 were directly related to desktopor Apple menu settings (all event-based). The sub-jects accepted only 2 out of 129 suggestions immedi-ately. Several others were not immediately acceptedbut considered for later use.Both positive examples related to programs thatwere used frequently: Eudora, an email handling pro-gram, and NewsWatcher, a Usenet newsreader, respec-tively. Eudora is usually opened right after starting upthe computer. Newswatcher is started irregularly forreading Usenet news. In the case of NewsWatcher, thesubject did not accept an early suggestion to launch theprogram right after startup because its use depends onhaving the time needed to read news. A later acceptedsuggestion applied to NewsWatcher's subscribed news-groups �le. However, it was necessary to adapt bothsuggestions manually due to a special installation ofboth programs being used by several users.All suggestions not immediately accepted but con-sidered for later use were related to desktop and Applemenu settings. Open Sesame! correctly observed theuser having repeatedly used particular folders, e.g., thefolder \COOP96" being used for the storage of vari-ous paper revisions during the writing of that paper.



However, the process of writing the paper being onlya temporary one, the subject did not agree to add analias for this folder to the desktop. Another examplewas the proposal of a new desktop icon representing the\AILab" folder. Among other things, the lecture notesfor the current course on real world computing are tobe found in this folder. Since we are rewriting partsof the course notes during this term, the observationmade is correct, of course, but this and other observa-tions are not important enough to warrant clutteringup the desktop with icons. An example for a suggestedremoval of an item from the Apple menu was \Web-Weaver." Admittedly, the program has not been usedfor a quite long time but, nevertheless, the subject didnot agree to remove the icon for a reason that is notvery obvious: The program's presence continuously re-minds the subject of having intended to update hisWWW homepage a long time ago.Aside from the positive examples discussed so far,there were no other suggestions by Open Sesame! thatwere even considered. Some suggestions were event-based and re
ected repetitive patterns in the usage ofsome programs, like the opening of BBEdit Lite rightafter Simpletext. The reasons for doing this are mani-fold: Simpletext, for example, is unable to handle largetext�les (this could be taken into consideration basedon the actual size of the text) or BBEdit has moresophisticated editing facilities. Obviously, the correctchoice of an editor depends heavily on the editing con-text. Probably a better suggestion would have been tosimply replace Simpletext by BBEdit. Open Sesame!also observed many time-based events such as openingNCSA Telnet on Friday at 14:30h or opening Fetch, a�le transfer utility, at 14:15h. There is simply no plau-sible reason why these programs should be opened atthat particular time; their use depends on need, nottime of day.Based on customer feedback, some of the pointsmentioned above have been addressed by the devel-oper. Improvements slated for the 2.0 version of theproduct include less dependence on time-based learn-ing and more on event-based learning, additional mon-itoring capabilities of third-party applications, incre-mental processing of data, in-context coaching to teachusers how to use features they are unaware of, �vetimes more types of events, and the ability to speci�yconditions on instructions (Caglayan et al. 1996).Monitoring User Behavior and SituatedActionBased on our experiences with Open Sesame!, we con-clude that Open Sesame! did not provide what weexpected from an intelligent personal assistant, al-

though we must admit that many of the capabilitiesmentioned by the developer were never seen, such ascreation of document templates for document formatsthat are reused, etc. Of course, satisfaction of expec-tations from a product is inherently subjective; oth-ers may be quite satis�ed with the performance ofOpen Sesame! This ambivalence is clearly shown inprofessional reviews. For example, the magazine PCAI (Rasmus 1995) shows enthusiasm about the prod-uct claiming that \Open Sesame! [...] is perhaps themost innovative of the agents currently shipping" whileMacUser (Marko� 1994) found Open Sesame's sugges-tions \dim" but at least useful for people that \use aMac in a fairly routine manner { turning it on eachmorning, opening a few favorite programs, and thenreading your e-mail."Open Sesame!'s failure as a personal assistant{as weexperienced it from an intelligent agent{can be traceddown to two distinct explanations: on the one hand,there are technical reasons why Open Sesame!'s abili-ties are limited in the actual domain, but on the otherhand, theoretical considerations indicate general limi-tations for (electronic) personal assistants.Technical problems range from a lack of supportfrom the operating system in monitoring user behaviorto problems with the amount of observed patterns ofbehavior. The former, lack of operating system sup-port, led the developers of Open Sesame! themselves,Charles River Analytics, to halt the development ofOpen Sesame! for the current Macintosh operatingsystem, claiming that \the MacOS does not make iteasy to monitor high level user behavior reliably by athird-party background application" (Caglayan 1996).An insu�cient amount of useful behavior patternsmay arise for di�erent reasons: For example, there mayjust not be enough patterns at all to be observed by anassistant or the learning algorithm is not good enoughto detect the patterns. This seems not to be the casesince Open Sesame! presented far more than hundredobservations while being tested and Charles River An-alytics actually decided to extract the learning algo-rithm and use it for a learning engine sold seperatelyfrom Open Sesame!. This may be interpreted as degreeof con�dence in the performance of the underlying al-gorithm.However, it seems not only be technical problemsthat cause the Open Sesame! to behave as \nagware"(Marko� 1994) instead of being a personal assistantas expected. Rather, it is the notion of situated-ness (Suchman 1987) being fundamentally neglectedin personal assistant design. In the following sectionwe brie
y introduce the notion of situatedness and wepoint out some implications for the design of personal



Figure 5: Some suggestions made by Open Sesame!assistants. Then we brie
y introduce an actual projectusing an alternative approach to personal assistant de-sign in order to illustrate our point. The example istaken from a di�erent domain, information �ltering,but both approaches to personal assistants are basedon monitoring user behavior. However, they di�er inthe implications drawn from considering situatedness.Situatedness and Personal AssistantsSome of Open Sesame!'s non-technical problems (i.e.,problems apart from those caused by the lack of operat-ing system support, etc.) may be interpreted as beingthe same problems as experienced in expert system de-sign. The most prominent problems in this domain arethe frame problem (Pylyshyn 1988), the frame of ref-erence problem (Clancey 1991), the symbol groundingproblem (Harnad 1990), and the lack of situatedness(Suchman 1987). Since a basic discussion of all theseproblems is far beyond the scope of this paper,4 wefocus on the lack of situatedness since it is the mostimportant problem in this domain and is directly re-lated to the observations made during the experienceswith Open Sesame!. Situatedness may be used to ex-plain why Open Sesame!'s generalization capabilites donot always re
ect what users expect.An example from daily work given by one of the pro-fessional reviewers of Open Sesame! (Marko� 1994)beautifully illustrates the implications of lacking situ-atedness. Open Sesame! correctly observed that theuser has emptied the trashcan several times right afterdragging a document into it. However, according to thereviewer, it is not correct to deduce that the trashcanshould always be emptied when a document is draggedinto it. Emptying the trashcan did not depend only onthe action of dragging the document into the trash but4The reader is referred to (Pfeifer & Rademakers 1991).

also on the content and type of the document, i.e., thedocument containing con�dential or private data. Itis important to note that judging the relevance of adocument in a situation is a problem in principle andnot a particular de�ciency of Open Sesame!: the im-portance is dependent upon the situation the user isinvolved, the content of the document, the relation be-tween the author and the reader, etc. Accordingly, thesigni�cance of the document may not be judged at allby an unsituated personal assistant (at least not by anelectronic one).Viewing humans as situated actors in contrast withcomputers explains why Open Sesame!'s generalizationcapabilities are sometimes correct (in a mathematicalsense) but nevertheless inappropriate. Both humansand computers performing real-world tasks necessar-ily interact with the real world and not with elec-tronic representations of the world. In order to avoidoverblown and partly unrealistic expectations of soft-ware agents, it is necessary to consider the fundamen-tal di�erences between the way humans and comput-ers interact with the real world. As a matter of fact,the real world is constantly changing, intrinsically un-predictable, and in�nitely rich. Therefore, it followsthat the real world is always subject to limited per-ceptions and is always only partially knowable (Pfeifer& Rademakers 1991). Humans have evolved to copewith this intrinsic vagueness. They behave as situatedactors (Suchman 1987), meaning that they are able touse the world as its own best model and to bring tobear their experience onto the current situation. In anextreme contrast, computer programs, e.g., softwareagents or personal assistants, rely on a prede�ned andmostly constant model of the real world.Viewing humans as situated actors means acceptingthat human behavior depends heavily on the actualsituation in which the human is involved. Consider-ing the above mentioned features of the real world,it should be clear that it is hardly possible to de�newhat constitutes a situation. Furthermore, it is evendi�cult to de�ne which aspects of a situation actu-ally guide human behavior. Even if subjects are inter-viewed on that topic, they are hardly able to explaintheir own behavior. Having subjects constructing post-hoc rationalizations of their own behavior in order togive plausible explanations is a well-known problem inpsychology. These considerations a�ect personal assis-tant design in so far as human behavior is somehowre
ected in the events a personal assistant is able tomonitor. However, this re
ection is intrinsically in-complete: Computational events only re
ect actionsthat directly a�ect the computer. They hardly re
ectthe situation guiding the user's behavior. We are con-



vinced that this is why personal assistants, e.g., OpenSesame!, experience severe di�culties in trying to de-tect what the behaviors guiding circumstances are andinferring when automating repetitive patterns wouldbe bene�cial for the users.In order to take situatedness more seriously into con-sideration, it might be useful to support the user inacting di�erently in di�erent situations. Recall the ex-ample mentioned above where Open Sesame! observedthat the user always emptied the trash after dragginga document into it, but the user did not want to au-tomate this procedure. This indicates that there aresome other aspects Open Sesame! has not yet con-sidered (and which might not be accessible at all fora personal assistant). Therefore, it might be useful too�er the user the choice between emptying or not emp-tying the trash. If the user fails to react within a cer-tain amount of time, the most frequently used choice isperformed automatically. Accordingly, in the contextof opening a document, it might be useful to let theuser choose between various editors he has been us-ing in the past. Having preferred BBedit several timesbecause of its capability of editing large text�les maybe obsolete when, for example, the superior formattingcapabilites of another product are needed. Leaving thechoice to the user might support him or her in actingsituated, although this presumption should be veri�edin real-world situations.Considering the discussion above, we conclude thata classical approach to personal assistant design (i.e.,based on detection of behavior patterns and general-ization of these patterns accross di�erent situations)is not adequate for supporting users for the durationof the task at hand. This is partly due to the natureof the desktop environment, which is not very suitablefor a \true" personal assistant, beyond automating theobvious with macros. However, the problems descibedare also due to neglect of the situatedness of humanbehavior. We brie
y discuss a proposal for a di�erentapproach to personal assistant design in the realm ofinformation �ltering below.Our current research interest is in information �l-tering, a hot topic due to electronic junk (Denning1982) and information overload (Palme 1984). Mostcurrent approaches are based on information retrievalalgorithms or machine learning techniques (Foltz &Dumais 1992). Situated Design (Pfeifer & Rademak-ers 1991) is a systems engineering methodology un-der development in our lab over the past few years fo-cused on the \information needs" of humans involvedin a particular working situation. Inspired by our ex-periences with Situated Design (Lueg & M�uller 1996;M�uller & Pfeifer to appear), we are investigating how

the notion of situated action can be exploited fruitfullyin the context of information �ltering.Our approach to intelligent information �ltering isnot based on sophisticated information retrieval algo-rithms or automatically acquired user models. Instead,we are investigating how users can be supported in act-ing situated in order to cope e�ciently with informa-tion overload. As an experimental domain we choseUsenet news because it is easily accessible and well-known as testbed for information retrieval algorithmsand machine learning techniques, and it is poorly struc-tured; although there are some inherent structuringmechanisms available such as newsgroups, structuredheaders, etc. (Horton & Adams 1987) Nevertheless,the classi�cation of a news article into newsgroups issolely done by the author based on his own preferences.In order to test our hypotheses, we are modifying an X-Windows based newsreader to monitor all user eventsand to support the user based on typical constellationsin these events. So far our approach is in a di�erent�eld, but similar to that of Open Sesame!.There are several constraints to be found in theUsenet News environment that can be exploited in or-der to provide user support. For example, user behav-ior with respect to a certain thread, i.e., the numberof news articles classi�ed under the same topic, is avaluable source of information. Without rating anyarticles of a thread, we can conclude that a user re-peatedly ignoring a thread is not interested in thatparticular topic. Therefore, the personal news assis-tant can �lter this thread automatically without anyinterpretation of the content. Of course, it must beconsidered that there may be good reasons to ignorethe thread at the time, e.g., time pressure of prevail-ing interests. Therefore, the thread is �ltered but notdeleted, thus enabling the user to actively in
uencethe �ltering process. The important di�erence of ourmore situated approach compared to Open Sesame!'sapproach is that we avoid to generalize across situ-ations: The user always has the possibility to in
u-ence the �ltering process. Of course, the possibility toin
uence the assistant's behavior also holds for OpenSesame! since the user is able to turn on/o� OpenSesame!'s recommendations or tune a recommendationusing the menu shown in �gure 4. However, while OpenSesame!'s settings are static (they do not adapt overtime apart from new recommendations based newly de-tected behavior patterns), the �ltering behavior of ournewsreader continuously adapts to user behavior.Future research based on this more situated ap-proach to Usenet News �ltering incorporates consid-eration of social or collaborative information �lteringapproaches, i.e., information �ltering based on ratings



(Resnick et al. 1994; Shardanand & Maes 1995) orrecommendations (Goldberg et al. 1992) given by hu-mans instead of being computed automatically. Theseapproaches have some common ground with our ownapproach in that they consider the social environmentof the users. However, they do not strongly incorpo-rate the notion of situatedness. We will then investi-gate whether our approach can be fruitfully exploitedin other domains supposedly causing information over-load such as email or WWW.Another topic to consideris that of communication over
ow(Ljungberg 1996) incontrast to information overload which is a quite dif-ferent but nevertheless interesting perspective.SummaryIn the previous sections, we looked at Open Sesame! asan example of a personal assistant and presented exam-ples of other software agents for various tasks. We con-cluded from our experiences with Open Sesame! that,as an intelligent software agent, OpenSesame! failsto meet the mark, lacking the 
exibility to supportthe user in acting situated. We also showed that itis almost impossible for a software agent to surmisefrom events and actions alone what prompts the userto make a particular decision at a given time, sincethe rational for the behavior is intrinsic to the currentmindset of the user. We argued that instead of tryingto infer what the user might do or what the user isthinking{a nearly impossible task{it would be betterto bring the notion of situatedness and situated actioninto the design process of software agents, thus creat-ing agents which provide active support for the task athand without attempting to reinvent the wheel{or theuser. Our Situated Design inspired approach, as dis-cussed previously, allows us to avoid many of the pit-falls of the previous approaches by removing the neces-sity for user modeling and knowledge representations.Remember: \the world is its own best model!" (RodBrooks) AcknowledgmentsMicrosoft Word is copyrighted 1987-1997 by MicrosoftCorporation. Open Sesame! is copyrighted 1993-1997by Charles River Analytics (CRA). We are gratefulto Charles River Analytics, especially Robin Jonesand James M. Mazzu, for their help; the Swiss Na-tional Science Foundation, the Swiss National EnergyResearch Commission, and the Software EngineeringGroup (University of Zurich) for their support andhelp; Rolf Pfeifer for a cool research environment; Mar-tin M�uller for valuable discussions on situatedness; andSnacker for his undying devotion.

References1994. Software Agents: Papers from the 1994 AAAISpring Symposium, Menlo Park, California: AAAIPress.1995. Information gathering from heterogeneous, dis-tributed environments : Papers from the 1995 AAAISpring Symposium, Menlo Park, California: AAAIPress.1994. Proceedings of the Twelth National Conferenceon Arti�cial Intelligence (AAAI-94), AAAI Press /The MIT Press.1996, to appear. Proceedings of the Thirteenth Na-tional Conference on Arti�cial Intelligence (AAAI-96), AAAI Press / The MIT Press.Armstrong, R.; Freitag, D.; Joachims, T.; andMitchell, T. 1995. Webwatcher: A learning apprenticefor the world wide web. In (AAAI Spring Symposium1995).Balabanovi�c, M., and Shoham, Y. 1995. Learninginformation retrieval agents: Experiments with auto-mated web browsing. In (AAAI Spring Symposium1995).Caglayan, A.; Snorrason, M.; Jacoby, J.; Mazzu, J.;and Jones, R. 1996. Lessons from open sesame! auser interface learning agent. In Practical Applica-tion of Intelligent Agents and Multi-Agent Technology(PAAM'96).Caglayan, A. 1996. Thank you! Email to SesameBetaMailing-List (SesameBeta@crasun.cra.com).Carpenter, G. A., and Grossberg, S. 1987. Art-2:Self-organization of stable category recognition codesfor analog input patterns. Applied Optics (26):4919{4930.Charles River Analytics. 1996. Open Sesame! worldwide web page http://www.opensesame.com.1991. CHI '91 Conference Proceedings, acm Press.1995. CHI '95 Conference Proceedings, acm Press.1995. CIKM'95 Intelligent Information Agents Work-shop.Clancey, W. 1991. The frame of reference problem inthe design of intelligent machines. In Architecture forIntelligence. The 22nd Carnegie Mellon Symposiumon Cognition, 257{423.Coen, M. H. 1994. Sodabot: A software agent en-vironment and construction system. Technical Re-port A.I. Technical Report 1493, MIT Arti�cial In-telligence Laboratory.



1996. Second International Conference on the Designof Cooperative Systems, France.1994. CSCW Conference Proceedings, acm Press.Cypher, A. 1991. Eager: Programming repetitivetasks by example. In (CHI 1991), 33{39.1991. Proceedings of the Conference on DistributedArti�cial Intelligence and Cooperative Work, Munich:Springer.Denning, P. J. 1982. Electronic junk. Communica-tions of the ACM 25(3):163{165.Etzioni, O.; Lesh, N.; and Segal, R. 1994. Build-ing softbots for unix (preliminary report). In (AAAISpring Symposium 1994), 9{16.Foltz, P. W., and Dumais, S. T. 1992. Personalized in-formation delivery: An analysis of information �lter-ing methods. Communications of the ACM 35(12):51{60.Foner, L. N. 1993. What's an agent, anyway? a soci-ological case study. Technical Report Agents Memo93-01, MIT Media Lab, Autonomous Agents Group.General Magic, Inc. 1995. The Telescript developerenvironment user guide (version 1.0 alpha).Goldberg, D.; Nichols, D.; Oki, B. M.; and Terry,D. 1992. Using collaborative �ltering to weave aninformation tapestry. Communications of the ACM35(12):61{69.Gray, R. S.; Rus, D.; and Kotz, D. 1996. Trans-portable information agents. submitted to AAAI96.Gray, R. S. 1995. Agent tcl: A transportable agentsystem. In (CIKM 1995).Harnad, S. 1990. The symbol grounding problem.Physica D(42):335{346.Harrison, C. G. 1995. Smart networks and intelligentagents. In Proceedings of Mediacom '95.Horton, M., and Adams, R. 1987. RFC-1036 (stan-dard for interchange of usenet messages).1995. Proceedings of the First International Confer-ence on Multi-Agent Systems, MIT Press.1984. Proceedings of the IFIP WG 6.5 Working Con-ference on Computer-Based Message Services, Ams-terdam, New York, Oxford: North Holland.1995. Proceedings of the International Conferenceon Arti�cial Intelligence (IJCAI-95), Los Altos, CA:Morgan Kaufmann.Jennings, N. R., and Wooldridge, M. J. 1996. Soft-ware agents. IEE Review 17{20.

Kautz, H. A.; Selman, B.; Coen, M.; and Ketchpal, S.1994. An experiment in the design of software agents.In (AAAI Spring Symposium 1994), 43{48.Kautz, H. A.; Selman, B.; and Coen, M. 1994.Bottom-up design of software agents. Communica-tions of the ACM 37(7):143{146.Koster, M. 1996. World wide web robots, wanderers,and spiders. http : ==info:webcrawler:com=mak=-projects=robots=robots:html.Lashkari, Y.; Metral, M.; and Maes, P. 1994. Collab-orative interface agents. In (AAAI 1994).Lieberman, H. 1995. Letizia: An agent that assistsweb browsing. In (IJCAI 1995).Ljungberg, F. 1996. An initial exploration of commu-nication over
ow. In (COOP 1996), 19{51.Lueg, C., and M�uller, M. 1996. Cooperative systems:The right direction? In (COOP 1996), 315{329.Maes, P. 1994a. Agents that reduce work and in-formation overload. Communications of the ACM37(7):31{40.Maes, P. 1994b. Social interface agents: Acquiringcompetence by learning from users and other agents.In (AAAI Spring Symposium 1994), 71{78.Marko�, J. 1994. Open sesame!: Help! there's anagent inhabiting my mac! MacUser 73.Mock, K.; Lawton, L.; and Hoyle, M. A. 1996. Cy-berspace game show hosts: Agents for socialization,not just entertainment. In (AAAI 1996 to appear).Moukas, A. 1996. Amalthea: Information discoveryand �ltering using a multiagent evolving ecosystem.In (PAAM 1996).M�uller, M., and Pfeifer, R. to appear. Developing Ef-fective Computer Systems Supporting Knowledge In-tensive Work: Situated Design in a Paper Mill. In K.Mehdi and J. Liebowitz, eds. Cases in InformationTechnology Management in Modern Organizations.Norman, D. 1994. How people might interact withagents. Communications of the ACM 37(7):68{71.Nwana, H. S. 1996. Software agents: An overview.Knowledge Engineering Review.1996. Proceedings of the Conference on Practical Ap-plication of Intelligent Agents & Multi-Agent Tech-nology.Palme, J. 1984. You have 134 unread mail! Do youwant to read them now? In (IFIP 1984), 175{184.Pfeifer, R., and Rademakers, P. 1991. Situated adap-tive design: Toward a methodology for knowledge sys-tems development. In (DAICW 1991), 53{64.



Pylyshyn, Z., ed. 1988. The Robot's Dilemma. TheFrame Problem in Arti�cial Intelligence. Ablex.Rao, A. S., and George�, M. P. 1995. BDI agents:from theory to practice. In (ICMAS 1995), 312{319.Rasmus, D. W. 1995. Intelligent agents: Dai goes towork. PC AI 27.Resnick, P.; Iacovou, N.; Suchak, M.; Berstrom, P.;and Riedl, J. 1994. GroupLens: An open architec-ture for collaborative �ltering of netnews. In (CSCW1994), 175{186.Shardanand, U., and Maes, P. 1995. Social infor-mation �ltering: Algorithms for automating \word ofthe mouth". In (CHI 1995), 210{217.Shoham, Y. 1993. Agent-oriented programming. Ar-ti�cial Intelligence (60):51{92.Suchman, L. 1987. Plans and situated action - TheProblem of Human-Machine Communication. Cam-bridge University Press.Sun Microsystems, Inc. 1996. DocumentationJava(tm) and JavaSoft(tm) products.Tambe, M.; Johnson, W.; Jones, R. M.; Koss, F.;Laird, J. E.; Rosenbloom, P. S.; and Schwamb, K.1995. Intelligent agents for interactive simulation en-vironments. AI Magazine (Spring):15{39.Wooldridge, M. J., and Jennings, N. R., eds. 1995a.Intelligent Agents. Lecture Notes in Arti�cial Intel-ligence. Springer Verlag. Proceedings of the ECAI-94 Workshop on Agent Theories, Architectures, andLanguages.Wooldridge, M. J., and Jennings, N. R. 1995b. Intel-ligent agents: Theory and practice. The KnowledgeEngineering Review 10(2):115{152.


