Open Sesame!: A Look at Personal Assistants®

Michelle A. Hoyle and Christopher Lueg
Al-Lab, Department of Computer Science
University of Zurich
Winterthurerstrasse 190, CH-8057 Zurich
Tel. +41-1-257 4577 Fax +41-1-363 0035
{hoyle,lueg}@ifi.unizh.ch

Abstract

Software agents, or softbots, are supposedly intelligent
programs that assist the user in performing repeti-
tive, boring, and time-consuming tasks. An overview
of software agents, with special attention focused on
the so-called personal assistants, is presented as an
introduction. Following that, an in-depth look at one
of the first commercially available intelligent agents
Open Sesame!, a personal assistant for managing the
Macintosh desktop environment, is presented. The
existing intelligent agent paradigms, we argue, break
down when it comes to actively helping the end user
because of flaws inherent in the current approaches to
intelligent agent design. To that end, we discuss the
reasons why this is, particularly with respect to Open
Sesame!, and promote the notion of situatedness to
be taken into account more seriously for developing
software agents that actively support the user for the
duration of the task at hand. As an example for a
more situated approach to personal assistant design,
a quick overview of a project to develop a personal
assistant for news filtering is discussed.

Introduction

In the following we report on several months experi-
ence with one of the first commercially available soft-
ware agents Open Sesame!, a personal assistant for
the Macintosh computer. We start initially with an
overview on software agents, focusing on personal as-
sistants. Following that, we briefly introduce Open
Sesame! and present observations made during a nine
month period of daily use of the agent. We discuss
these observations with respect to user modeling and
situated action, and propose an alternative approach
to agent design which is inspired by two years of work
on Situated Design, a methodology for designing com-
puter systems being developed in our lab over the past

* Proceedings of the International Conference on the
Practical Application of Intelligent Agents and Multi-Agent
Technology (PAAM 97) London, 21.-23.4.97, pp. 51-60.

few years. To illustrate our points we describe a situ-
ated approach to Usenet News filtering, where the user
is actively supported during the filtering task. Finally,
we conclude by reiterating the lessons the last decade
of intelligent agent design has taught us and look to-
ward a more realistic future involving agents that work
hand-in-hand with their human counterparts.

Software Agents

Currently the limelight of public and scientific inter-
est is focused on software agents, also called softbots,
with many new commercial products being released
that supposedly make use of artificial intelligence tech-
niques. Even entire issues of popular science maga-
zines have been devoted to the topic [c.f. Scientific
American, September 1995]. Unfortunately, with all
this publicity, software agents are being hyped at a
dangerously high level due to overblown and partly
unrealistic expectations (Norman 1994; Jennings &
Wooldridge 1996). Therefore, it is necessary to care-
fully inspect that we can realistically expect from soft-
ware agents in terms of performance and responsi-
bilities. Within the agent community itself, there is
no yet commonly agreed upon definition of what ex-
actly constitutes an agent. One central point, however,
seems to be autonomy, or the agent’s ability to con-
trol its own behavior to a certain degree (Foner 1993;
Jennings & Wooldridge 1996; Etzioni, Lesh, & Segal
1994). Other points mentioned in the literature, e.g.,
(Jennings & Wooldridge 1996), are so-called social abil-
ities such as the ability to exchange data with other
agents, responsiveness to the environment, and proac-
tiveness.

Nevertheless, it is still unclear what distinguishes
software agents from other computational entities, e.g.,
processes in operating systems or objects in object-
oriented languages. Some researchers view agents as
being conceptually more abstract entities than objects
(e.g. (Shoham 1993)). Others classify computational
entities as agents depending on the tasks they are to

complete; for example, interface agents that aid a user
or personal assistants. The classification of entities
as agents according to their computational complexity,
i.e., as gopher agents, service performing agents, and
“predictive” agents (Jennings & Wooldridge 1996), is
also commonly used.

Application areas for software agents range from dis-
tributed artificial intelligence (DAT) (Rao & Georgeff
1995; Wooldridge & Jennings 1995a) to interactive sim-
ulation environments (Tambe et al. 1995) and enter-
tainment (Mock, Lawton, & Hoyle 1996). In the con-
text of increasing interconnectivity, mobile computing
is of increasing interest (Harrison 1995). Mobile agents
are capable of roaming entire networks and traveling
from one machine to another (Coen 1994; Gray 1995;
Gray, Rus, & Kotz 1996; General Magic, Inc. 1995;
Sun Microsystems, Inc. 1996). Other recent ap-
proaches to software agents are strongly influenced
by Artificial Life, where biological tenets of evolution
and genetics are applied to the development of agents.
The application of artificial life techniques to an infor-
mation filtering problem produced Amalthea (Moukas
1996), an agent capable of filtering through online
WWW documents. Comprehensive overviews of soft-
ware agents in general are available from Wooldridge
and Jennings (Wooldridge & Jennings 1995b) and
Nwana (Nwana 1996).

Since agents are being unrealistically hyped, the
challenge is to select a task that is both realistically
solvable and of significance to real users. Therefore,
this paper focuses on personal assistants, both in fact
and in theory.

Personal Assistants

With the advent of graphical user interfaces (GUI),
direct manipulation has become the dominating
metaphor in human-machine communication, i.e., the
user must 1nitiate all tasks explicitly and monitor all
events (Maes 1994a). In recent years, the idea of per-
sonal assistants supporting humans in their work has
emerged. The primary thrust of this trend is that
computer programs take over boring, or repetitive and
time-consuming tasks in order to increase human pro-
ductivity and creativity.

The main application areas so far are in helping hu-
mans to cope with supposed information overload and
to assist users in performing repetitive, common tasks.
Information filtering and information seeking are two
approaches to deal with information overload caused
by modern communication media like Usenet, email,
or the World Wide Web (WWW). Information filter-
ing tries to reduce the amount of incoming information
to a comfortable amount by the application of informa-

tion retrieval methods. An example of such an appli-
cation is Letizia, a WWW filtering agent developed at
the MIT Media Lab by Henry Lieberman (Lieberman
1995). Letizia attempts to infer from documents the
user has examined what other currently accessible doc-
uments might be of current interest to the user, where
current is defined by some degradation function. She
can then make recommendations, which the user may
or may not heed which provides a type of feedback as
to the helpfulness of the suggestion.

Information seeking aids the user in finding inter-
esting information, which grows increasingly difficult
for a user because of the large amount of material
now available electronically. The goal here, then, is to
search for interesting information automatically to re-
lieve the user of tedious search tasks, e.g., (Balabanovié
& Shoham 1995; Armstrong et al. 1995; Lieberman
1995) and, of course, WWW search engines®.

Email handling and meeting scheduling are examples
of applications to help users in performing repetitive
tasks. The former allows for the automatic forwarding,
storage, and deletion of electronic mails, freeing the
user from the necessity of coping with electronic junk
mail (Denning 1982), or performing repetitive tasks
such as storing mails from a mailing list or deleting
unwanted requests. A personal assistant for meeting
scheduling incorporates an agent who can negotiate
a meeting in line with the preferences of its owners.
Such an assistant was developed at AT&T Bell Labs
by Henry Kautz and Bart Selman (Kautz ef al. 1994;
Kautz, Selman, & Coen 1994). KautzBot and Selman-
Bot, the names for their scheduling agents, commu-
nicated with other agents via email and attempted to
automatically negotiate an acceptable meeting time for
all involved participants. Methods for both these ap-
plications include user-defined models of interest, e.g.,
rule-based kill files or email filters, and automatically
acquired user models.

Other approaches to assisting users belong to the
class of human-computer interaction (HCT). Here the
idea is to monitor user activities and to detect repet-
itive sequences. Examples range from simple purely
event-driven approaches like macro recorders to more
complex approaches doing some processing to uncover
repetitive tasks like Eager (Cypher 1991). Most peo-
ple are already familiar with macro recorders which
appear in many text editors and word processors. Ap-
plications such as Eager analyze a collection of accu-
mulated events and attempt to deduce a pattern that
might be automated out of the collection. Both these
types of applications tend to be quite limited in what
they can accomplish as the algorithms driving them

1See (Koster 1996) for a comprehensive overview

Calendar Wizard

Which style weould you 1ike?

(" Boxes and borders
" Banner
® Jazzy

[Cancel] [<Back][Hext>][Finish]

Figure 1: Microsoft Word’s calendar “wizard”

are very literal minded, not permitting much devia-
tion from what was recorded originally, making use of
explicit keywords and so forth.

Most of the above approaches are still within the
realms of academia; however, some beta-releases of
academic products are available to the public. For
example, the MIT Media Lab’s email filtering agent
Maxims, which allows the agent to contact other
email agents for clues about how to handle pieces of
email if there are no precedence rules for the cur-
rent piece of email (Lashkari, Metral, & Maes 1994;
Maes 1994b), is available as a beta-release. Commer-
cial products have made use of some more complex
approaches to provide so-called assistants, or wizards,
to monitor user activities in modern word processors
and spreadsheets and propose enhancements or faster
ways of accomplishing tasks in the case of ponder-
ous behaviour. For example, Microsoft Word provides
“wizards” (See Figure 1). A wizard is just a template
that helps the user create particular types of docu-
ments quickly by answering some questions. In order
to create a calendar document, the user is asked if they
want boxes around the calendar, which of three title
banners they want, etc. One of the first commercially
available “intelligent software agents” (Charles River
Analytics 1996) was Open Sesame! for the Macintosh,
which we describe in the next section and report on
several months of experience with the agent.

Open Sesame! — A Commercially
Available Software Agent

The commercially available software package Open
Sesame! from Charles River Analytics was announced
as being the first learning assistant for the Apple Mac-
intosh and Microsoft Windows (Charles River Analyt-
ics 1996). Tts task is to “eliminate mundane, time-
consuming tasks so that every minute you spend at
your computer is productive.” Open Sesame! observes

Preferences
Your name: Learn:
|Master Chris | (] Open Item
<] Close Item
MNotif
B9 Notify . [JEmpty Trash
{® by Dialog [Shut Down
2 by Menu < Make Stationery
[Uoice | ; [<] Rebuild Desktop
- 52 Hide
[<] Showr
Confidence: < Arrange
2 Very High & Apple Menu
3 High [Startup Items
@ Medium [<] Desktop ltems

[Eancel] [[114]]

Figure 2: Open Sesame’s preferences

user activity and learns which tasks the user performs
repeatedly. It then performs these tasks automatically.
Charles River Analytics expects intelligent agents to
“radically change the way we use computers, allowing
software to be an assistant to the user.” They even ex-
pect that “the impact of software agents on personal
computing can be equal to, if not greater than, the
impact that graphical user interfaces on personal com-
puting when they replaced command line user inter-
faces.”

The 1.1 version of Open Sesame! tested requires an
Apple Macintosh with MacOS 7.0 or higher. Tests were
performed using a Macintosh Quadra 700 with MacOS
7.01 and 8 megabytes of main memory and Power Mac-
intosh 8100 with MacOS 7.5.3 and 16 megabytes of
memory. Both computers were used frequently for of-
fice work, email and Usenet news handling, and web
browsing. The system configurations also included,
among other things, commercial packages like a word
processor, a spreadsheet, a newsreader, an email pro-
gram, and a web browser. Both computers are con-
nected to a LAN via Ethernet, and from there to the
Internet.

Open Sesame! observes user activity by monitor-
ing Apple events? and inferring repetitive patterns. It
sends Apple events directly to the Finder and script-
able applications without using the AppleScript® en-
gine. Open Sesame! distinguishes between time-based

2Apple events are high-level process instructions that
can be sent to almost any process running on a Macintosh
under a MacOS 7.x or greater environment. At a minimum,
most applications support the ability to start, quit, and
open and close a file through Apple events.

® AppleScript is Apple’s language for the exchange of
data between applications through Apple events.

EN

Observations

=
-

Michelle, | notice you very often

= open “NCSA Telnet 2.6™

4>

Instruction Info

Add this item to the Apple menu?

(Eait...) ST TSN

Figure 3: A suggestion by Open Sesame!

and event-based triggers. A time-based trigger means
that Open Sesame! observes a certain user action re-
peatedly at the same time, e.g., every Monday at 9:00
am or every full hour. An exact match is not required.
9:00 am also covers some minutes before or after 9:00
am. An event-based trigger means that Open Sesame!
observes a sequence of certain desktop actions repeat-
edly, e.g., opening a folder after closing Eudora. Fig-
ure 2 shows some preferences offered by Open Sesame!.
The user can choose a certain degree of anthropomor-
phization (e.g., notification by a female voice), a confi-
dence threshold, and user actions to be considered for
learning.

The manual for Open Sesame! mentions that some
neural learning mechanism is used but does not give
further explanations as to what kind of neural net-
work or which learning rate is used. (Caglayan et al.
1996), however, claim that Open Sesame! makes use of
a variation of the adaptive resonancy theory-2 (ART-
2) algorithm of Carpenter and Grossberg (Carpenter
& Grossberg 1987). The implementation of the ART-
2 algorithm allows Open Sesame! to monitor and to
recognize patterns relating to the opening and clos-
ing of documents or folders; running and quitting of
applications; user preferences with respect to hiding,
showing, and arranging various objects in the desk-
top environment; and user preferences with respect to
desktop management, startup items, and objects oc-
curring in the Apple Menu “...through competitive
filtering of patterns for finding the ‘best match’ cate-
gory, combined with top-down template matching for
determining if the best match is ‘good enough.”’

The user is able to edit suggestions (see figure 3)
made by Open Sesame!. The program always asks
whether the user welcomes the actual suggestion at
all. If the user indicates that the suggestion is un-
acceptable, the program promises never to make that
observation again. If the user welcomes the sugges-
tion, then the user is invited to modify the instruction

Title: |open "Eudara Settings * startup |
Task: Open [tern
ftemn: | Eydora Settings] add...
l
i
“when : | every day ¥ || at b I startup hd I

Status:|_on Vl confirm always VI

Figure 4: Manipulation possibilities offered by Open
Sesame!

suggested by Open Sesame! prior to the suggestion be-
ing incorporated into Open Sesame!. Figure 4 shows
the facilities to tune the instruction, e.g., the status of
the instruction at all, the time of the suggested action,
and the requirement of confirmations prior to execu-
tion of the instruction. A tuning facility is provided in
a rule-based manner. Unfortunately, the manual does
not mention how these manually modified tunings are
considered by Open Sesame!

Open Sesame! was tested on the Apple Macintosh
Quadra 700 and a Power Macintosh 8100 for a pe-
riod of more than 9 months. During this period, Open
Sesame! made 129 different suggestions (see figure 5
for some examples). 70 suggestions were related to pro-
grams installed on the computer (31 time-based, 39
event-based) and 59 were directly related to desktop
or Apple menu settings (all event-based). The sub-
jects accepted only 2 out of 129 suggestions immedi-
ately. Several others were not immediately accepted
but considered for later use.

Both positive examples related to programs that
were used frequently: Eudora, an email handling pro-
gram, and NewsWatcher, a Usenet newsreader, respec-
tively. Eudora is usually opened right after starting up
the computer. Newswatcher is started irregularly for
reading Usenet news. In the case of NewsWatcher, the
subject did not accept an early suggestion to launch the
program right after startup because its use depends on
having the time needed to read news. A later accepted
suggestion applied to NewsWatcher’s subscribed news-
groups file. However, it was necessary to adapt both
suggestions manually due to a special installation of
both programs being used by several users.

All suggestions not immediately accepted but con-
sidered for later use were related to desktop and Apple
menu settings. Open Sesame! correctly observed the
user having repeatedly used particular folders, e.g., the
folder “COOP96” being used for the storage of vari-

ous paper revisions during the writing of that paper.

However, the process of writing the paper being only
a temporary one, the subject did not agree to add an
alias for this folder to the desktop. Another example
was the proposal of a new desktop icon representing the
“AlLab” folder. Among other things, the lecture notes
for the current course on real world computing are to
be found in this folder. Since we are rewriting parts
of the course notes during this term, the observation
made 1s correct, of course, but this and other observa-
tions are not important enough to warrant cluttering
up the desktop with icons. An example for a suggested
removal of an item from the Apple menu was “Web-
Weaver.” Admittedly, the program has not been used
for a quite long time but, nevertheless, the subject did
not agree to remove the icon for a reason that is not
very obvious: The program’s presence continuously re-
minds the subject of having intended to update his
WWW homepage a long time ago.

Aside from the positive examples discussed so far,
there were no other suggestions by Open Sesame! that
were even considered. Some suggestions were event-
based and reflected repetitive patterns in the usage of
some programs, like the opening of BBEdit Lite right
after Simpletext. The reasons for doing this are mani-
fold: Simpletext, for example, 1s unable to handle large
textfiles (this could be taken into consideration based
on the actual size of the text) or BBEdit has more
sophisticated editing facilities. Obviously, the correct
choice of an editor depends heavily on the editing con-
text. Probably a better suggestion would have been to
simply replace Simpletext by BBEdit. Open Sesame!
also observed many time-based events such as opening
NCSA Telnet on Friday at 14:30h or opening Fetch, a
file transfer utility, at 14:15h. There is simply no plau-
sible reason why these programs should be opened at
that particular time; their use depends on need, not
time of day.

Based on customer feedback, some of the points
mentioned above have been addressed by the devel-
oper. Improvements slated for the 2.0 version of the
product include less dependence on time-based learn-
ing and more on event-based learning, additional mon-
itoring capabilities of third-party applications, incre-
mental processing of data, in-context coaching to teach
users how to use features they are unaware of, five
times more types of events, and the ability to specifiy
conditions on instructions (Caglayan et al. 1996).

Monitoring User Behavior and Situated
Action
Based on our experiences with Open Sesame!, we con-

clude that Open Sesame! did not provide what we
expected from an intelligent personal assistant, al-

though we must admit that many of the capabilities
mentioned by the developer were never seen, such as
creation of document templates for document formats
that are reused, etc. Of course, satisfaction of expec-
tations from a product is inherently subjective; oth-
ers may be quite satisfied with the performance of
Open Sesame! This ambivalence is clearly shown in
professional reviews. For example, the magazine PC
AT (Rasmus 1995) shows enthusiasm about the prod-
uct claiming that “Open Sesame! [...] is perhaps the
most innovative of the agents currently shipping” while
MacUser (Markoff 1994) found Open Sesame’s sugges-
tions “dim” but at least useful for people that “use a
Mac in a fairly routine manner — turning it on each
morning, opening a few favorite programs, and then
reading your e-mail.”

Open Sesame!’s failure as a personal assistant—as we
experienced it from an intelligent agent—can be traced
down to two distinct explanations: on the one hand,
there are technical reasons why Open Sesame!’s abili-
ties are limited in the actual domain, but on the other
hand, theoretical considerations indicate general limi-
tations for (electronic) personal assistants.

Technical problems range from a lack of support
from the operating system in monitoring user behavior
to problems with the amount of observed patterns of
behavior. The former, lack of operating system sup-
port, led the developers of Open Sesame! themselves,
Charles River Analytics, to halt the development of
Open Sesame! for the current Macintosh operating
system, claiming that “the MacOS does not make it
easy to monitor high level user behavior reliably by a
third-party background application” (Caglayan 1996).

An insufficient amount of useful behavior patterns
may arise for different reasons: For example, there may
just not be enough patterns at all to be observed by an
assistant or the learning algorithm is not good enough
to detect the patterns. This seems not to be the case
since Open Sesame! presented far more than hundred
observations while being tested and Charles River An-
alytics actually decided to extract the learning algo-
rithm and use it for a learning engine sold seperately
from Open Sesame!. This may be interpreted as degree
of confidence in the performance of the underlying al-
gorithm.

However, it seems not only be technical problems
that cause the Open Sesame! to behave as “nagware”
(Markoff 1994) instead of being a personal assistant
as expected. Rather, it is the notion of situated-
ness (Suchman 1987) being fundamentally neglected
in personal assistant design. In the following section
we briefly introduce the notion of situatedness and we
point out some implications for the design of personal

Title Task Status
B ppple menu Chooser *, * Control Panel... Apple Menu on
& fpple menu with “®Rothenflue alias ¥ wit... Apple Menu an
& spple menu without “Web Weaver ¥ now #pple Menu an
& desktop “DropePsS ™, “MacGzip alias ™. n... Desktop tems on
A desktop with folder “COOFSE ™ now Desktop ltems on

& rebuild desktop at the nesct startup Rebuild Desktop an
A show observations Wed 14:30 Unr Shiover on

& startup items “Open Sezame! aliaz * now Startup ltems an
& startup items with "Open Sezame! ™ no\k Startup ltems on
& open “Eudora Settings * startup Open ltern on, confirm
& open “Zuerich Bioko Diverses * after ope... Open ltern on, confirm

O add “Lueg™ to the desktop

O add folder " &llab* to the desktop

O add folder * Articles ¥ to the desktop

O add folder "COOF3E Y to the desktop

O add folder “Dro It 411! to the desktop

O add folder “Dacus ™ to the desktop

O add folder “Eudora ™ to the desktop
0 obzervations

Desktop lterns off
Desktop ltems off
Desktop ltems off
Desktop ltems off
Cesktop lterms off
Desktop ltems off

Desktop ltems off

Figure 5: Some suggestions made by Open Sesame!

assistants. Then we briefly introduce an actual project
using an alternative approach to personal assistant de-
sign in order to illustrate our point. The example is
taken from a different domain, information filtering,
but both approaches to personal assistants are based
on monitoring user behavior. However, they differ in
the implications drawn from considering situatedness.

Situatedness and Personal Assistants

Some of Open Sesame!’s non-technical problems (i.e.,
problems apart from those caused by the lack of operat-
ing system support, etc.) may be interpreted as being
the same problems as experienced in expert system de-
sign. The most prominent problems in this domain are
the frame problem (Pylyshyn 1988), the frame of ref-
erence problem (Clancey 1991), the symbol grounding
problem (Harnad 1990), and the lack of situatedness
(Suchman 1987). Since a basic discussion of all these
problems is far beyond the scope of this paper,® we
focus on the lack of situatedness since it is the most
important problem in this domain and is directly re-
lated to the observations made during the experiences
with Open Sesame!. Situatedness may be used to ex-
plain why Open Sesame!’s generalization capabilites do
not always reflect what users expect.

An example from daily work given by one of the pro-
fessional reviewers of Open Sesame! (Markoff 1994)
beautifully illustrates the implications of lacking situ-
atedness. Open Sesame! correctly observed that the
user has emptied the trashcan several times right after
dragging a document into it. However, according to the
reviewer, it is not correct to deduce that the trashcan
should always be emptied when a document is dragged
into 1t. Emptying the trashcan did not depend only on
the action of dragging the document into the trash but

*The reader is referred to (Pfeifer & Rademakers 1991).

also on the content and type of the document, i.e., the
document containing confidential or private data. It
is important to note that judging the relevance of a
document in a situation is a problem in principle and
not a particular deficiency of Open Sesame!: the im-
portance is dependent upon the situation the user is
involved, the content of the document, the relation be-
tween the author and the reader, etc. Accordingly, the
significance of the document may not be judged at all
by an unsituated personal assistant (at least not by an
electronic one).

Viewing humans as situated actors in contrast with
computers explains why Open Sesame!’s generalization
capabilities are sometimes correct (in a mathematical
sense) but nevertheless inappropriate. Both humans
and computers performing real-world tasks necessar-
ily interact with the real world and not with elec-
tronic representations of the world. In order to avoid
overblown and partly unrealistic expectations of soft-
ware agents, it is necessary to consider the fundamen-
tal differences between the way humans and comput-
ers interact with the real world. As a matter of fact,
the real world is constantly changing, intrinsically un-
predictable, and infinitely rich. Therefore, i1t follows
that the real world is always subject to limited per-
ceptions and is always only partially knowable (Pfeifer
& Rademakers 1991). Humans have evolved to cope
with this intrinsic vagueness. They behave as situated
actors (Suchman 1987), meaning that they are able to
use the world as its own best model and to bring to
bear their experience onto the current situation. In an
extreme contrast, computer programs, e.g., software
agents or personal assistants, rely on a predefined and
mostly constant model of the real world.

Viewing humans as situated actors means accepting
that human behavior depends heavily on the actual
situation in which the human is involved. Consider-
ing the above mentioned features of the real world,
it should be clear that it is hardly possible to define
what constitutes a situation. Furthermore, it is even
difficult to define which aspects of a situation actu-
ally guide human behavior. Even if subjects are inter-
viewed on that topic, they are hardly able to explain
their own behavior. Having subjects constructing post-
hoc rationalizations of their own behavior in order to
give plausible explanations is a well-known problem in
psychology. These considerations affect personal assis-
tant design in so far as human behavior is somehow
reflected in the events a personal assistant is able to
monitor. However, this reflection is intrinsically in-
complete: Computational events only reflect actions
that directly affect the computer. They hardly reflect
the situation guiding the user’s behavior. We are con-

vinced that this is why personal assistants, e.g., Open
Sesame!, experience severe difficulties in trying to de-
tect what the behaviors guiding circumstances are and
inferring when automating repetitive patterns would
be beneficial for the users.

In order to take situatedness more seriously into con-
sideration, it might be useful to support the user in
acting differently in different situations. Recall the ex-
ample mentioned above where Open Sesame! observed
that the user always emptied the trash after dragging
a document into it, but the user did not want to au-
tomate this procedure. This indicates that there are
some other aspects Open Sesame! has not yet con-
sidered (and which might not be accessible at all for
a personal assistant). Therefore, it might be useful to
offer the user the choice between emptying or not emp-
tying the trash. If the user fails to react within a cer-
tain amount of time, the most frequently used choice is
performed automatically. Accordingly, in the context
of opening a document, it might be useful to let the
user choose between various editors he has been us-
ing in the past. Having preferred BBedit several times
because of its capability of editing large textfiles may
be obsolete when, for example, the superior formatting
capabilites of another product are needed. Leaving the
choice to the user might support him or her in acting
situated, although this presumption should be verified
in real-world situations.

Considering the discussion above, we conclude that
a classical approach to personal assistant design (i.e.,
based on detection of behavior patterns and general-
ization of these patterns accross different situations)
is not adequate for supporting users for the duration
of the task at hand. This is partly due to the nature
of the desktop environment, which is not very suitable
for a “true” personal assistant, beyond automating the
obvious with macros. However, the problems descibed
are also due to neglect of the situatedness of human
behavior. We briefly discuss a proposal for a different
approach to personal assistant design in the realm of
information filtering below.

Our current research interest is in information fil-
tering, a hot topic due to electronic junk (Denning
1982) and information overload (Palme 1984). Most
current approaches are based on information retrieval
algorithms or machine learning techniques (Foltz &
Dumais 1992). Situated Design (Pfeifer & Rademak-
ers 1991) is a systems engineering methodology un-
der development in our lab over the past few years fo-
cused on the “information needs” of humans involved
in a particular working situation. Inspired by our ex-
periences with Situated Design (Lueg & Miiller 1996;
Miiller & Pfeifer to appear), we are investigating how

the notion of situated action can be exploited fruitfully
in the context of information filtering.

Our approach to intelligent information filtering is
not based on sophisticated information retrieval algo-
rithms or automatically acquired user models. Instead,
we are investigating how users can be supported in act-
ing situated in order to cope efficiently with informa-
tion overload. As an experimental domain we chose
Usenet news because it is easily accessible and well-
known as testbed for information retrieval algorithms
and machine learning techniques, and it is poorly struc-
tured; although there are some inherent structuring
mechanisms available such as newsgroups, structured
headers, etc. (Horton & Adams 1987) Nevertheless,
the classification of a news article into newsgroups is
solely done by the author based on his own preferences.
In order to test our hypotheses, we are modifying an X-
Windows based newsreader to monitor all user events
and to support the user based on typical constellations
in these events. So far our approach is in a different
field, but similar to that of Open Sesame!.

There are several constraints to be found in the
Usenet News environment that can be exploited in or-
der to provide user support. For example, user behav-
ior with respect to a certain thread, i.e., the number
of news articles classified under the same topic, 1s a
valuable source of information. Without rating any
articles of a thread, we can conclude that a user re-
peatedly ignoring a thread is not interested in that
particular topic. Therefore, the personal news assis-
tant can filter this thread automatically without any
interpretation of the content. Of course, 1t must be
considered that there may be good reasons to ignore
the thread at the time, e.g., time pressure of prevail-
ing interests. Therefore, the thread is filtered but not
deleted, thus enabling the user to actively influence
the filtering process. The important difference of our
more situated approach compared to Open Sesame!’s
approach is that we avoid to generalize across situ-
ations: The user always has the possibility to influ-
ence the filtering process. Of course, the possibility to
influence the assistant’s behavior also holds for Open
Sesame! since the user is able to turn on/off Open
Sesame!’s recommendations or tune a recommendation
using the menu shown in figure 4. However, while Open
Sesamel’s settings are static (they do not adapt over
time apart from new recommendations based newly de-
tected behavior patterns), the filtering behavior of our
newsreader continuously adapts to user behavior.

Future research based on this more situated ap-
proach to Usenet News filtering incorporates consid-
eration of social or collaborative information filtering
approaches, i.e., information filtering based on ratings

(Resnick et al. 1994; Shardanand & Maes 1995) or
recommendations (Goldberg et al. 1992) given by hu-
mans instead of being computed automatically. These
approaches have some common ground with our own
approach in that they consider the social environment
of the users. However, they do not strongly incorpo-
rate the notion of situatedness. We will then investi-
gate whether our approach can be fruitfully exploited
in other domains supposedly causing information over-
load such as email or WWW. Another topic to consider
is that of communication overflow(Ljungberg 1996) in
contrast to information overload which is a quite dif-
ferent but nevertheless interesting perspective.

Summary

In the previous sections, we looked at Open Sesame! as
an example of a personal assistant and presented exam-
ples of other software agents for various tasks. We con-
cluded from our experiences with Open Sesame! that,
as an intelligent software agent, OpenSesame! fails
to meet the mark, lacking the flexibility to support
the user in acting situated. We also showed that it
is almost impossible for a software agent to surmise
from events and actions alone what prompts the user
to make a particular decision at a given time, since
the rational for the behavior is intrinsic to the current
mindset of the user. We argued that instead of trying
to infer what the user might do or what the user is
thinking—a nearly impossible task—it would be better
to bring the notion of situatedness and situated action
into the design process of software agents, thus creat-
ing agents which provide active support for the task at
hand without attempting to reinvent the wheel-or the
user. Qur Situated Design inspired approach, as dis-
cussed previously, allows us to avoid many of the pit-
falls of the previous approaches by removing the neces-
sity for user modeling and knowledge representations.
Remember: “the world is its own best model!” (Rod
Brooks)

Acknowledgments

Microsoft Word is copyrighted 1987-1997 by Microsoft
Corporation. Open Sesame! is copyrighted 1993-1997
by Charles River Analytics (CRA). We are grateful
to Charles River Analytics, especially Robin Jones
and James M. Mazzu, for their help; the Swiss Na-
tional Science Foundation, the Swiss National Energy
Research Commission, and the Software Engineering
Group (University of Zurich) for their support and
help; Rolf Pfeifer for a cool research environment; Mar-
tin Muller for valuable discussions on situatedness; and
Snacker for his undying devotion.

References

1994. Software Agents: Papers from the 1994 AAAIT
Spring Symposium, Menlo Park, California: AAAI
Press.

1995. Information gathering from heterogeneous, dis-
tributed environments : Papers from the 1995 AAAT
Spring Symposium, Menlo Park, California: AAAI
Press.

1994. Proceedings of the Twelth National Conference
on Artificial Intelligence (AAAI-94), AAAT Press /
The MIT Press.

1996, to appear. Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence (AAAI-
96), AAAT Press / The MIT Press.

Armstrong, R.; Freitag, D.; Joachims, T.; and
Mitchell, T. 1995. Webwatcher: A learning apprentice
for the world wide web. In (AAAT Spring Symposium
1995).

Balabanovi¢, M., and Shoham, Y. 1995. Learning
information retrieval agents: Experiments with auto-
mated web browsing. In (AAAT Spring Symposium

1995).

Caglayan, A.; Snorrason, M.; Jacoby, J.; Mazzu, J.;
and Jones, R. 1996. Lessons from open sesame! a
user interface learning agent. In Practical Applica-
tion of Intelligent Agents and Multi-Agent Technology
(PAAM’96).

Caglayan, A. 1996. Thank you! Email to SesameBeta

Mailing-List (SesameBeta@crasun.cra.com).

Carpenter, G. A., and Grossberg, S. 1987. Art-2:
Self-organization of stable category recognition codes
for analog input patterns. Applied Optics (26):4919-
4930.

Charles River Analytics. 1996. Open Sesame! world
wide web page http://www.opensesame.com.

1991. CHI ’91 Conference Proceedings, acm Press.
1995. C'HI ’95 Conference Proceedings, acm Press.

1995. CIKM’95 Intelligent Information Agents Work-
shop.

Clancey, W. 1991. The frame of reference problem in
the design of intelligent machines. In Architecture for
Intelligence. The 22nd Carnegie Mellon Symposium
on Cognition, 257-423.

Coen, M. H. 1994. Sodabot: A software agent en-
vironment and construction system. Technical Re-
port A.I. Technical Report 1493, MIT Artificial In-
telligence Laboratory.

1996. Second International Conference on the Design
of Cooperative Systems, France.

1994. CSCW Conference Proceedings, acm Press.

Cypher, A. 1991. Eager: Programming repetitive
tasks by example. In (CHI 1991), 33-39.

1991. Proceedings of the Conference on Distributed
Artificial Intelligence and Cooperative Work, Munich:
Springer.

Denning, P. J. 1982. Electronic junk. Communica-
tions of the ACM 25(3):163-165.

Etzioni, O.; Lesh, N.; and Segal, R. 1994. Build-
ing softbots for unix (preliminary report). In (AAAI
Spring Symposium 1994), 9-16.

Foltz, P. W., and Dumais, S. T. 1992. Personalized in-
formation delivery: An analysis of information filter-

ing methods. Communications of the ACM 35(12):51—
60.

Foner, L. N. 1993. What’s an agent, anyway?” a soci-
ological case study. Technical Report Agents Memo
93-01, MIT Media Lab, Autonomous Agents Group.

General Magic, Inc. 1995. The Telescript developer
environment user guide (version 1.0 alpha).

Goldberg, D.; Nichols, D.; Oki, B. M.; and Terry,
D. 1992. Using collaborative filtering to weave an
information tapestry. Communications of the ACM
35(12):61-69.

Gray, R. S.; Rus, D.; and Kotz, D. 1996. Trans-
portable information agents. submitted to AAAT96.

Gray, R. S. 1995. Agent tcl: A transportable agent
system. In (CTKM 1995).

Harnad, S. 1990. The symbol grounding problem.
Physica D(42):335-346.

Harrison, C. G. 1995. Smart networks and intelligent
agents. In Proceedings of Mediacom ’95.

Horton, M., and Adams, R. 1987. RFC-1036 (stan-

dard for interchange of usenet messages).

1995. Proceedings of the First International Confer-
ence on Multi-Agent Systems, MIT Press.

1984. Proceedings of the IFIP WG 6.5 Working Con-
ference on Computer-Based Message Services, Ams-
terdam, New York, Oxford: North Holland.

1995. Proceedings of the International Conference
on Artificial Intelligence (IJCAI-95), Los Altos, CA:

Morgan Kaufmann.

Jennings, N. R., and Wooldridge, M. J. 1996. Soft-
ware agents. [EE Review 17-20.

Kautz, H. A.; Selman, B.; Coen, M.; and Ketchpal, S.
1994. An experiment in the design of software agents.

In (AAAT Spring Symposium 1994), 43-48.

Kautz, H. A.; Selman, B.; and Coen, M. 1994.
Bottom-up design of software agents. Communica-

tions of the ACM 37(7):143-146.

Koster, M. 1996. World wide web robots, wanderers,
and spiders. hitp : //info.weberawler.com/mak /-
projects/robots/robots.html.

Lashkari, Y.; Metral, M.; and Maes, P. 1994. Collab-
orative interface agents. In (AAAT 1994).

Lieberman, H. 1995. Letizia: An agent that assists
web browsing. In (IJCAT 1995).

Ljungberg, F. 1996. An initial exploration of commu-

nication overflow. In (COOP 1996), 19-51.

Lueg, C., and Muller, M. 1996. Cooperative systems:
The right direction? In (COOP 1996), 315-329.

Maes, P. 1994a. Agents that reduce work and in-
formation overload. Communications of the ACM
37(7):31-40.

Maes, P. 1994b. Social interface agents: Acquiring
competence by learning from users and other agents.

In (AAAT Spring Symposium 1994), 71-78.

Markoff, J. 1994. Open sesame!: Help! there’s an
agent inhabiting my mac! MacUser 73.

Mock, K.; Lawton, L.; and Hoyle, M. A. 1996. Cy-
berspace game show hosts: Agents for socialization,
not just entertainment. In (AAAT 1996 to appear).

Moukas, A. 1996. Amalthea: Information discovery
and filtering using a multiagent evolving ecosystem.

In (PAAM 1996).

Muller, M., and Pfeifer, R. to appear. Developing Ef-
fective Computer Systems Supporting Knowledge In-
tensive Work: Situated Design in a Paper Mill In K.
Mehdi and J. Liebowitz, eds. Cases in Information
Technology Management in Modern Organizations.

Norman, D. 1994. How people might interact with
agents. Communications of the ACM 37(7):68-71.

Nwana, H. S. 1996. Software agents: An overview.
Knowledge Engineering Review.

1996. Proceedings of the Conference on Practical Ap-
plication of Intelligent Agents & Multi-Agent Tech-
nology.

Palme, J. 1984. You have 134 unread mail! Do you
want to read them now? In (IFIP 1984), 175-184.

Pfeifer; R., and Rademakers, P. 1991. Situated adap-
tive design: Toward a methodology for knowledge sys-
tems development. In (DATCW 1991), 53-64.

Pylyshyn, Z., ed. 1988. The Robot’s Dilemma. The
Frame Problem in Artificial Intelligence. Ablex.

Rao, A. S., and Georgeff, M. P. 1995. BDI agents:
from theory to practice. In (ICMAS 1995), 312-319.

Rasmus, D. W. 1995. Intelligent agents: Dai goes to
work. PC Al 27.

Resnick, P.; Tacovou, N.; Suchak, M.; Berstrom, P.;
and Riedl, J. 1994. GroupLens: An open architec-
ture for collaborative filtering of netnews. In (CSCW
1994), 175-186.

Shardanand, U., and Maes, P. 1995. Social infor-
mation filtering: Algorithms for automating “word of

the mouth”. In (CHI 1995), 210-217.

Shoham, Y. 1993. Agent-oriented programming. Ar-
tificial Intelligence (60):51-92.

Suchman, L. 1987. Plans and situated action - The
Problem of Human-Machine Communication. Cam-
bridge University Press.

Sun Microsystems, Inc. 1996. Documentation
Java(tm) and JavaSoft(tm) products.

Tambe, M.; Johnson, W.; Jones, R. M.; Koss, F.;
Laird, J. E.; Rosenbloom, P. S.; and Schwamb, K.
1995. Intelligent agents for interactive simulation en-
vironments. AT Magazine (Spring):15-39.

Wooldridge, M. J., and Jennings, N. R., eds. 1995a.
Intelligent Agents. Lecture Notes in Artificial Intel-
ligence. Springer Verlag. Proceedings of the ECAI-
94 Workshop on Agent Theories, Architectures, and
Languages.

Wooldridge, M. J., and Jennings, N. R. 1995b. Intel-
ligent agents: Theory and practice. The Knowledge
FEngineering Review 10(2):115-152.

