
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence

ISSN: 0883-9514 (Print) 1087-6545 (Online) Journal homepage: www.tandfonline.com/journals/uaai20

Learn sesame a learning agent engine

Alper Caglayan, Magnus Snorrason, Jennifer Jacoby, James Mazzu, Robin
Jones & Krishna Kumar

To cite this article: Alper Caglayan, Magnus Snorrason, Jennifer Jacoby, James Mazzu, Robin
Jones & Krishna Kumar (1997) Learn sesame a learning agent engine, Applied Artificial
Intelligence, 11:5, 393-412, DOI: 10.1080/088395197118109

To link to this article: https://doi.org/10.1080/088395197118109

Published online: 26 Nov 2010.

Submit your article to this journal

Article views: 140

View related articles

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/journals/uaai20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/088395197118109
https://doi.org/10.1080/088395197118109
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/088395197118109?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/088395197118109?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/088395197118109?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/088395197118109?src=pdf

LEARN SESAME—A LEARNING
AGENT ENGINE

ALPER CAGLAYAN, MAGNÚS SNORRASON,
JENNIFER JACOBY, JAMES MAZZU, ROBIN
JONES, and KRISHNA KUMAR
Charles River Analytics, Cambridge, Massachusetts,
USA

Open Sesame!‡ 1.0Ðreleased in 1993Ð was the world’s first commercial user interface learn-

ing agent. The development of this agent involved a number of decisions about basic design

issues that had not been previously addressed, including the expected types of agents and the

preferred form and frequency of interaction. In the 2 years after shipping Open Sesame! 1.0,

we have compiled a rich database of customer feedback. Many of our design choices have

been validated by the general approval of our customers, while some were not received as

favorably. Thanks to the overwhelming amount of feedback, we were able to substantially im-

prove the design for Open Sesame! 2.0 and develop a cross-platform learning engineÐLearn

SesameÐ that can be used to add learning agent functionality to any third-party application.

In this article, we present a summary of the lessons learned from customer feedback, an out-

line of resulting design changes, the details of the developed learning agent engine, and

planned research.

BAC KGROUND ON USER INTERFAC E LEARNING AGENTS

In our user interface (UI) learning agent paradigm, a learning agent sits in the

background and observes user actions, finds repetitive patterns, and automates them

upon approval. The learning agent paradigm uses the metaphor of a personal

assistant because it is responsible for facilitating user tasks (such as opening and

closing documents, performing desktop maintenance, and creating aliases).

Our learning agent acquires its knowledge from the user by a hybrid neural

expert architecture, where neural networks perform knowledge acquisition, and

expert system techniques perform inference and knowledge maintenance. Although

other methods for learning information patterns do exist, we feel that hybrid neural

expert system architectures are the best choice for UI learning agents. They take

advantage of each technology’ s best features: neural networks add robust unsuper-

vised learning capability to a hybrid system, while a knowledge-based expert system

interprets the neural network’ s results (Mazzu et al., 1991; Liebowitz, 1993).

In addition to their learning capability, learning agents have other features,

advantages, and benefits as described in Table 1.

Applied Artificial Intelligence, 11:393± 412, 1997
Copyright � 1997 Taylor & Francis
0883-9514/97 $12.00 + .00 393

Revised January 1997.

Address correspondence to Alper Caglayan, Charles River Analytics, 55 Wheeler Street, Cambridge, MA

02138, USA. E-mail: akc@cra.com; http://www.opensesame.com

Learning agents can provide a quantum leap in user experience by customizing

software to the user. Learning agents are particularly applicable when (Maes &

Kozierok, 1993)

· the application domain contains a significant amount of repetitive behavior,

· the repetitive behavior is different for different users, and

· the environment supports the monitoring of user events and actuation of user

commands.

The human-agent interface is an important consideration in a learning agent

design, since human-computer interaction is inherently social, as evidenced by

individual emotions such as trust, anger, annoyance, and forgiveness toward

machines and applications (Nass et al., 1993). Based on research involving human-

human interaction, findings from the social sciences reveal factors affecting

human-agent interaction, including the following.

· Agent name: an agent’ s name (such as ª personal assistantº) implies that the agent

possesses certain abilities and characteristics (Laurel, 1990).

· Agent form: a form that is too human-like (for example, an animated face or

human-sounding natural language) may build up the user’ s expectations of the

agent in such a way that cannot possibly be fulfilled (Norman & Long, 1994).

· Communication skills: The agent’ s language ability, the frequency with which it

interrupts the user, and the language that it employs all play a significant role in

the degree to which the agent is liked (Nass et al., 1993).

· Trust: Trust must be built over time, and the agent should never take expensive

actions without permission (Norman & Long, 1994).

· Believability: The user’ s degree of belief in what the agent says is another

characteristic that needs to be built up over time.

Open Sesame! 1.0

Open Sesame! is the first desktop agent that learns to automate the routine tasks

of a user. Open Sesame! has been reviewed and covered in trade and mainstream

publications worldwide from the New York Times to the Japanese edition of PC Week.

Table 1. Features and advantages of learning agent technology

Feature Advantage Benefit

Learning Identify tasks for automation Reduced workload

Automation Perform repetitive tasks Increased productivity

Customization Automatically set user’ s

software preferences

Enhanced user

experience

Tutoring Provide in-context coaching Reduced training costs

394 A. Caglayan et al.

Open Sesame! has been shipping since December 1993 and is distributed worldwide.

Currently, we are shipping version 1.1 of Open Sesame!, which is specifically

optimized for MacOS on PowerPC (this version is also available for downloading

from our Web page, http://www.opensesame.com).

Table 2 defines the terms required to discuss the interaction between the user

and Open Sesame! without ambiguity.

Open Sesame! version 1.0 watches for two kinds of tasks: time-based and

event-based. A time-based task is something that the user does at a particular time.

For example, opening electronic mail every day at nine o’ clock is a time-based task.

An event-based task is something that the user does in relation to another task. For

example, opening the clock desk accessory before logging into an on-line database

is an event-based task.

Open Sesame! is based on the hybrid neural expert architecture (Mazzu et al.,

1994) shown in Figure 1.

Open Sesame! compares the high-level User Events (such as opening a folder

or quitting an application) generated by the user’ s mouse clicks and keystrokes to

information stored in its neural Learning Engine in the background and to informa-

tion stored in its Inference Engine in real-time. The neural learning engine looks for

repetitive patterns that have not been automated. If it finds one, then Open Sesame!

adds an observation to the Observation Knowledge Base, such as the one shown in

Figure 2.

If the user gives her/his User Approval, then Open Sesame! creates an instruc-

tion to automate the task that it observed and adds it to the Instruction Knowledge

Base. The Inference Engine compares monitored User Events with patterns from

the Instruction Knowledge Base, representing existing instructions. When it finds a

match, the Inference Engine automatically sends a set of Environment or Application

Events to the operating system to perform the instruction.

The user can either give the agent direct Written Instructions or accept the

agent’ s offer of automation for an observed user work pattern. When the agent

informs the user of an observation, the user has the following options:

· accept the observation and have the agent create an instruction,

· decline the observation,

· edit the observation to fine-tune the instruction, or

Table 2. Open Sesame! UI elements

Term Definition

Instruction A set of directions to the agent on how to carry out a task

Confirmation A request for user’s approval before the agent carries out an instruction

Observation A behavioral pattern learned by the agent

Suggestion An agent recommendation to the user

SesameÐ A Learning Agent Engine 395

· postpone a decision until later.

Open Sesame! 1.0 can learn the following patterns: opening and closing folders

and documents, opening and quitting applications, hiding and showing applications,

arranging application windows, and performing routine desktop maintenance.

In further detail, the Open Sesame! 1.0 learning engine architecture is based on

both Macintosh domain-specific knowledge and domain-independent learning ser-

vices. The domain-specific knowledge is modeled using the object-oriented prin-

ciples of Objects, Attributes, and Events in addition to the learned Patterns and

corresponding Rules (as shown in Table 3).

As the user interacts with the Macintosh, the monitored events are used as input

to the learning engine services, which produce patterns to be interpreted. The

learning engine interprets the patterns according to predefined interpretation knowl-

edge and produces observations when the patterns represent useful information. The

learning engine also provides validation services, which manage new observations

and existing rules. These learning engine services are summarized in Table 4.

The pattern recognition in Open Sesame! uses a neural network paradigm called

GEN-ART (Snorrason & Caglayan, 1994; Caglayan & Snorrason, 1993), based on

Figure 2. Observation dialog box.

Figure 1. Open Sesame! architecture.

396 A. Caglayan et al.

adaptive resonance theory (Carpenter et al., 1991), to categorize the high-level

events it monitors. One advantage of ART type networks is their provision for

self-organized learning, which does not require prior knowledge of event-pattern

categories. This is accomplished via bottom-up competitive filtering of patterns for

finding the ª best matchº category, combined with top-down template matching for

determining if the best match is ª good enough.º GEN-ART allows the use of

customized distance metrics to handle input patterns with qualitative (nominal or

ordinal) variables.

Because of Open Sesame’ s! predefined knowledge of its environment, sugges-

tions can also be made about tasks that cannot be learned from user behavior. For

example, Apple recommends rebuilding the Macintosh Desktop once a month or so;

hence Open Sesame! will offer to perform this task for the user. The user has the

same options as with observations: to accept, decline, edit, or postpone.

LESSONS LEARNED FROM C USTOMER FEEDBAC K

Open Sesame! was announced at MacWorld Boston, 3 August 1993. Since its

debut, we have profiled our customer base on a regular basis. Figure 3 depicts a

breakdown of our customer base by Macintosh skill level. The breakdown has not

changed significantly since the product began shipping.

Our market research reveals that the large percentage of advanced users can be

attributed to our marketing emphasis on the novelty and ª high-techº nature of agent

software. Open Sesame! was unlike any other product on the market, and we took

Table 3. Learning engine knowledge elements

Term Definition

Objects That which the user or system interacts with (documents, applications, etc.)

Attributes Properties whose values define the state of an object (size, creation date, etc.)

Events That which causes an object to change its state (open, close, shutdown, etc.)

Patterns Learned sequence of events that represent user behavior

Rules If-Then statements that determine the Open Sesame! agent behavior

Table 4. Learning engine services

Term Description

Pattern recognition Identifies event-based and time-based patterns from monitored objects/events using

a neural network paradigm

Pattern interpretation Determines whether the recognized pattern is significant and decides how to

provide the information to the user, possibly as an observation

Validation Ensures the uniqueness of learned observations and user-generated instructions

Rule inferencing Compares monitored events and objects to the instructions in the knowledge base

and executes any triggered instructions

SesameÐ A Learning Agent Engine 397

the approach of educating the public about learning agent technology at numerous

trade shows and user group presentations. According to our findings, Open Sesame!

users are interested in agents that can increase productivity, function as a smart

assistant, and retrieve information.

The lack of novice users reflects a real problem facing developers of commercial

agent products. Two possible reasons for this asymmetry are intimidation by the

concept of the agent ª entityº and the need for a clear relationship with existing

product categories. We have started the battle of increasing public awareness of what

UI learning agents can do for the average user, but our data indicate that the appeal

is still heavily skewed toward the expert user.

We have received formal and informal feedback from customers, researchers,

user groups, and the software trade press about Open Sesame!. The feedback has

been both positive and negative, and it sheds light on ways in which UI agents can

be improved. Feedback is summarized in Table 5 (comments about Open Sesame!’ s

strengths are preceded by a plus sign (+), and comments about its weaknesses are

preceded by a minus sign (±).

Most users like the idea of a personal agent that learns repetitive actions and

makes the user more productive. The concept is intriguing, and users look forward

to giving Open Sesame! a try. Some users become disappointed by the product

because they assume it can learn everything they do. When their agent does not learn

a pattern, the user thinks there must be something wrong with it. What the user does

not realize is that Open Sesame! has only a limited number of tasks and patterns that

it can learn. After using Open Sesame! for a few months, we have seen that users

either accept its limitations and continue to use and enjoy the product, or they become

discouraged and stop using the productÐ they decide to wait until a more feature-

laden version becomes available.

Our data also reveal that users who have highly customized computer work

environments tend to like the product less. Open Sesame! 1.0 made a number of

Figure 3. Breakdown of user base by skill level.

398 A. Caglayan et al.

assumptions about the usage and organization of the ª Apple Menuº and desktop: it

offered to ª manageº these areas for the user. We learned that without knowing the

user’ s work habits and organizational preferences, it was presumptive of Open

Sesame! to assume that all users work the same way. Ideally, a UI agent should be

flexible and should adapt to all work and organizational styles. It should also be a

good citizen to the user and to other applications in the environment and should not

force the user to follow any one work style.

Table 5. Summary of customer feedback

Topic Definition Feedback

Agent’ s form agent’ s appearance, ª personaº ± needs more colorful and graphical interface

± needs more use of sound for feedback

+ users like the ability to change its voice

Agent’ s communi-

cation skills

manner in which the agent

communicates with the user

± let the user customize agent language

± user fewer technical phrases

± use more natural sounding language

± allow option to communicate by sound, by

dialog box, or by sound and dialog box

+ users like the use of voice

Agent’ s task-specific

skills

types of events that are

monitored and actions that

can be performed

± too few types of actions

± some actions too limited in scope

± does not do enough for advanced users

+ users like the automation of maintenance tasks

that are easily forgotten

Agent’ s social skills ª politenessº of the agent:

when and how frequently it

interrupts

± some users felt interruptions should happen less

often

± others felt interruptions should happen more

often (Open Sesame! talks more often when it

is first installed)

± need control over timing of interruptions (i.e.,

not while logged into an expensive on-line

service)

± interruptions should be prioritized

+ users like the ability to defer reviewing

observations

User interface interface through which users

access the agent’s

preferences

± power users want access to more preferences

+ users like the pull-down menu and sentence

structure of instructions

+ nonprogrammers like the fact that they do not

have to learn a scripting language

Learning time-based and event-based

learning

± time-based observations, although correctly

deduced, frequently are not useful

± should not offer to automate patterns performed

by another application

± should not offer observations about topics the

user has already rejected

+ users like the novelty and usefulness of event-

based learning

SesameÐ A Learning Agent Engine 399

Users were in general agreement that time-based learning was not very useful.

One of the problems is that time-based learning is often linked to other key causal

and conditional events. When Open Sesame! presents time-based learning sugges-

tions without the context of these other events, it looks less intelligent. For example,

an observation such as

I notice you often open your AppleCD Audio Player at 11:15 AM

is meaningless without knowing whether a CD is mounted in the CD-ROM drive.

A more appropriate observation would be

I notice you open your AppleCD Audio Player when an audio CD is mounted.

In summary, we learned that time-based learning is brittle without a more complete

picture of other events and conditions that are present at the same time.

One of the main lessons learned from Open Sesame! 1.0 is that while users

approach any new software program with different skill levels, interaction preferen-

ces, work and organizational styles, and assumptions, these issues are especially

important to note in the case of UI agents because of the social nature of the

interaction between the software and the user. When a UI agent interrupts the user

at the wrong time or makes a less than helpful suggestion, the mistake is more

pronounced because the agent is more than just an application: because of their social

nature, agents are subject to a more ª humanº level of criticism.

The above feedback represents a summary of the lessons learned from Open

Sesame! 1.0. In the next section, we describe how this feedback influenced the

design of Open Sesame! 2.0.

OPEN SESAME! 2.0

On the basis of the feedback above and research in user experience, social

interfaces, and intelligent agents, we have dramatically improved the design for

Open Sesame! 2.0.

Table 6 summarizes the most significant design changes and the expected user

benefits of those changes.

In direct response to advanced user requests, one of the main enhancements in Open

Sesame! 2.0 is its expanded skill set. Version 2.0 monitors and actuates more than 5

times the types of events, and 100 times the number of events, than version 1.0.

In addition to new events, Open Sesame! 2.0 also provides support for condi-

tions in the instruction syntax. In order to counteract the time-based learning effects

encountered in the previous version and give more flexibility to advanced users,

400 A. Caglayan et al.

version 2.0 offers the ability to narrow the scope of instructions by specifying the

states under which instructions can fire.

A useful side effect gained from monitoring so many events and conditions is the

ability to offer predefined tips to the user, especially novice users. In-context coaching

functionality was added specifically to attract novice users, in response to the asymmetric

skill level data discussed in the previous section. This feature allows Open Sesame! to

coach the user about tips and tricks based on the user’s current activity. Open Sesame! 2.0

is being bundled with a coach that teaches about the Macintosh operating system.

Open Sesame! 2.0 also includes a larger predefined knowledge base in order to

provide more immediate benefits to the user. This came about from user feedback

on redundant observations: we found that we can accelerate the agent’ s learning

process by incorporating the knowledge learned from version 1.0 into the knowledge

base of version 2.0. In essence, Open Sesame! 2.0 will hold the collective knowledge

of all version 1.0 agents within its initial knowledge base.

Table 6. Summary of design changes

Topic Design change Expected benefit

Agent’ s form added user-selectable character options, graphical

representations, and sounds

users can give their agents a person-

ality, with more color and sound

Agent’ s communi-

cation skills

added ability to control interaction content (text

before, during, or after performing tasks, and

in case of errors)

accommodate users who require

significant control over the agent

allow option to communicate only by sound, not

by dialog

accommodate users who do not like

visual feedback

let the user customize agent language and use

fewer technical phrases

more natural sounding language

increased monitoring and actuation

 abilities make OS! act more

 intelligently, hence more attractive

 to advanced users

Agent’ s task-specific

skills

five times more types of events and actuations,

added some capability to monitor and perform

tasks internal to third-party applications

added the ability to specify conditions on

instructions

teach novice users how to use features

they have not yet discovered

added in-context coaching

Agent’ s social skills added the ability to directly specify the

 observation frequency from the agent

added a ª do not disturbº event

satisfies both users who wanted more

frequent and less frequent

interactions

switched to multipane windows users gain control over timing of

interruptions

User interface removed various options for customizing what

types of events get learned

allows more preferences without

cluttered windows

simplify the interface by removing

preferences no one used

Learning more emphasis on event-based and less on time-

based learning

more intelligent observations

allows real-time processing of many

switched from batch to incremental processing of

data

 more event types without slowing

down other applications

SesameÐ A Learning Agent Engine 401

Although this explosion in functionality complicates the simple user interface

that version 1.0 boasted, initial feedback from advanced beta testers is positive.

Figure 4 shows the user interface for setting preferences in version 1.0. There are

more preference settings in version 2.0, but by using a multipane window interface,

the clutter is kept to a minimum, as can be seen in Figure 5.

Comparing the two figures also shows that we removed most of the options for

customizing which types of events get learned. In version 1.0 these options acted as

an indirect control for observation frequency: if the user felt that too many ª open

itemº observations were being generated, deselecting the ª open itemº learn option

would stop similar observations from appearing in the future. Interestingly, very few

users utilized this feature. Instead, they asked for more control over the overall

observation frequency. In version 2.0, through the Interaction pane in the Preferen-

ces application, the user is given greater control over agent interaction on both an

individual instruction basis and an overall interaction basis.

LEARN SESAMEÐ LEARNING AGENT ENGINE

One of the lessons learned from our Open Sesame! product effort was the

importance of third-party applications’ cooperation in providing monitoring and

actuation support to a learning agent. After more than a decade of personal comput-

ing, it is important to note that the mainstream PC operating systems do not yet

incorporate operating system services that would enable personalization, such as

user preferences, user model, or user work organization style. In response to this

need, we developed a cross-platform learning engineÐ Learn SesameÐ that can be

Figure 4. Preference dialog from Open Sesame! version 1.0.

402 A. Caglayan et al.

embedded into any application, such as desktop applications, Web servers, and on-line

analytical processing (OLAP) engines, to provide learning agent functionality.

The learning engine, called Learn Sesame, provides a framework for modeling

and learning sequences of events in a dynamically changing environment. A client

application presents the engine with a continuous stream of time-stamped events

that describe occurrences in the environment and the states of the objects affected

by these events. The engine analyzes this stream of events and incrementally

identifies recurrent sequential patterns in the event stream. The engine outputs

patterns, called facts, which are passed back to the client for domain-specific

interpretation. A fact contains information that will enable the client application to

convert it into an if-then rule when such a conversion makes sense for the domain

being monitored.

The learning framework itself is domain independent and includes a language

that provides a simple, structured vocabulary for clients to describe the domain

objects and events. The application designer uses this language to construct a domain

model that encodes client-specific notions of comparability, similarity, and prox-

imity of objects and events. Using this model, the client converts application-specific

data into an event stream and interprets the facts output by the engine. The engine

uses the model to identify clusters of similar sequences of events in the event stream,

to analyze the clusters, and to construct facts describing the similarities found

between the sequences in the clusters. The clustering and cluster analysis algorithms

Figure 5. Preference dialog from Open Sesame! version 2.0.

SesameÐ A Learning Agent Engine 403

used by the engine incorporate all the notions of similarity and proximity defined

by the domain model. Thus the client application has considerable control over the

learning process. Figure 6 shows the overall relationship between a client and the

engine.

The following are the main features of the Learn Sesame engine. A more detailed

description of the concepts and architecture of the learning engine can be found on

the products page at the Open Sesame Web site (Kumar, 1996).

1. Domain independence: The domain model is explicitly defined by the client

application. The engine works in the realm of abstract events and objects whose

domain-specific properties are encoded in the model.

2. Efficient incremental learning: The engine operates in an incremental

manner: events and sequences are clustered and analyzed as they are inserted,

and in a multithreaded environm ent such as Windows NT, the processes

described in Figure 6 can all be carried out concurrently in independent threads.

3. Configurable clustering algorithms: The model definition language and

the clustering algorithms operate in conjunction to allow dom ain-specific control

of the learning process. This allows the application designer to control what kinds

of facts will be learned.

4. Encompasses functionality of attribute-based learning algorithms: Sequence

learning is proper generalization of traditional attribute-based learningÐ the special

Figure 6. Relationship between a client and the Learn Sesame engine.

404 A. Caglayan et al.

case of learning sequences of length 1 provides functionality fully equivalent to

traditional attribute-based clustering algorithms.

5. Robust, scaleable implementation: The architecture of the engine uses effi-

cient database techniques and a threading model that fully exploits the inherent

concurrency in the learning process. The architecture is designed to scale smoothly

to multiprocessor platforms with robust preemptive threading, while providing full

functionality (albeit, at some cost in performance) in single-threaded or coopera-

tively threaded environments. The engine can also be configured to account for

available time and memory constraints of the application at hand.

The incorporation of the Learn Sesame learning engine into a third-party

application involves the development of a monitoring knowledge base and actuation

components for the selected application. Developing an application monitor is

analogous to factoring an application to make it scriptable or recordable. This

process involves

· identifying an event model for the application;

· determining an object model encapsulating the user action, application state, and

environment events of significance for each event; and

· implementing the event object model and notification code.

In general, the event dictionary is an appropriate subset of the user actions that

the application user interface allows, such as menu commands and dialog buttons

and controls. To integrate Learn Sesame into an application, the domain is first

modeled as a collection of objects, attributes, and events. An object represents a

real-world entity such as a document on the desktop or an HTML page on a Web

server. Attributes specify the structure and properties of an object. An event is

modeled by the change in the value of an object attribute.

An object type definition defines a category of modeled objects for the domain.

This definition specifies the possible attributes of the object and establishes the

criteria for distinguishing between distinct objects of the given object type. For

example, the following defines a document type:

ObjectType Document

{

Attributes:

DocumentName: TypeName;

DocumentCreator: Type Application;

DocumentSize: TypeFloat

CreationDate: TypeDate;

SesameÐ A Learning Agent Engine 405

Forms:

FormName: {DocumentCreator};

}

A form is defined as a named subset of the possible attributes of a given object

type that is used in controlling the comparability of objects in the domain. Forms

enable multiple views of the same object for clustering purposes. Essentially, object

types define which objects can be compared, and object forms define the criteria for

object similarity. An object instance represents a snapshot of an object in the domain.

Every object instance has unique object type and form identifier associated with it

and defines a value for each of the attribute names in that form. Two object instances

are said to have the same identity if they have the same object type and form

identifier, and agree on the values of all the attributes in the form.

Occurrences in the domain that affect domain objects are called events. An event

has zero or more targets, each of which is an object instance, and one or more named

attributes, called the parameters of the event. The target of an event specifies an

object whose attribute value changes owing to this event. An event type defines a

category of related events. For example, the following defines the print document

event in Learn Sesame.

EventType Print Document

{

TargetTypes:

Document;

Parameters:

Application: TypeApplication;

Printer: TypePrinter;

};

The definition above sets up an event type whose targets are of type Docu-

ment defined earlier, and has two parameters: the application, an attribute of type

TypeApplication, and the printer, an attribute of TypePrinter.

The Learn Sesame engine processes the stream of events to find recurrent

patterns. The event model described is used to define the meaning of comparability,

similarity, and proximity of events in the application domain. Comparability is

defined by object type, similarity is defined by object form, and proximity is defined

by the attribute metrics dependent on the domain. The learning engine uses this

406 A. Caglayan et al.

model to identify clusters of events, analyze the clusters, and generate facts describ-

ing the similarity found between the clusters. In general, the clusters can be

composed of event sequences, in which case the engine finds recurrent sequential

patterns such as repetitive navigation patterns of a user at a Web site. When

specialized to the case of sequences of length 1, the engine can find events with

common attribute values such as the set of users with common information interests

at a Web site.

For each new event (e.g., print Excel document, click on link Products on the

Home Page of a Web site), the engine forms sequences by concatenating the event

to existing subsequences in the event history. The maximum and minimum lengths

of sequences constructed are configurable parameters of the engine.

For each new sequence, the engine identifies the unique collection of sequences

with the same identity as the sequence and inserts the new sequence into this

collection to form clusters (e.g., all excel documents printed in printer Money, all

users who clicked on Products from .edu domain). The unique collection of sequen-

ces that have the same identity as a given sequence is called the primary cluster for

the sequence.

So a primary cluster is the set of all sequences derived from the event history

that share the same identity. The use of the term cluster in this context is consistent

with traditional statistical clustering, where a cluster usually denotes a set of vectors

in a metric space that are close to each other according to a distance metric.

The clustering in the learning engine incorporates both bottom-up and top-down

techniques in the formation and analysis of clusters. The primary clusters are

produced bottom-up by grouping all sequences with several attributes in common

by virtue of their identity (e.g., all Word documents created this year, all users who

clicked on a particular page from a .com domain). The engine then groups primary

clusters, according to a configurable set of criteria, into a hierarchy of clusters called

secondary clusters (e.g., all documents created this year or all users from any domain

who clicked on a particular page in a Web site), as shown in Figure 7. Secondary

clusters are formed by taking the union of primary clusters or other secondary

clusters.

The criteria for the formation of primary and secondary clusters are structural;

the primary-level groups sequences together by identity, and secondary clusters may

group sequences together by the object and event types of the events in a sequence.

The form construct enables a measurement of proximity between events. For

example, if a floating-point value appears as the value of a parameter of an event,

the model designer could ª forceº events with different values for this attribute to

belong to the same primary cluster as an attribute of an object with a null form. Then

sequences containing event instances with any value for this parameter will be forced

into the same primary cluster. Similarly, when primary clusters are grouped together

into secondary clusters, the criteria used are typically the types of events and the

presence or absence of attributes rather than the proximity of attribute values.

SesameÐ A Learning Agent Engine 407

Figure 8 shows the event processing in the engine. When a cluster (e.g., all Word

documents with size ³ 1 Mb or all Word documents with size <1 Mb), whether

primary or secondary, is analyzed, it may be broken down into subclusters based on

the proximity of events according to the metric defined in the domain model. In

general, the facts produced by analyzing the subclusters are more specific than those

obtained by analyzing different clusters.

The output of the learning engine is a fact. A fact is a logical expression that

states a common set of properties shared by sequences in a cluster. For example, a

fact could signify the identities of the targets of two events are the same, which

implies that the value of the form attributes of these targets agrees. On the other

hand, not all the attributes need to be in agreement. The nonform attributes on targets

and object valued parameters may vary quite widely between the sequences. The

properties shared in common by the sequence are described by a sequence pattern,

which may be viewed as a boolean expression on the event attributes of events in

the sequence.

In the cluster analysis phase a cluster with a given base pattern is analyzed to

produce a fact. The base pattern is guaranteed to satisfy the property that every

sequence in the cluster satisfies the pattern. The fact output by the analysis will

consist of both a sequence pattern satisfied by a predetermined percentage of

sequences in the cluster and a trigger (if any).

Figure 9 shows the cluster analysis steps. Triggers are used to convert a fact

derived from a cluster into an if-then rule. The trigger (e.g., Select All event in a

Word application) of a cluster (e.g., the set of sequences (Select All, Copy) in a Word

application) is determined by considering a complementary cluster. A complemen-

Figure 7. Primary and secondary clusters.

408 A. Caglayan et al.

tary cluster consists of all possible sequences in the event history that do not belong

to the given cluster but also satisfy this prefix of the pattern in the analyzed cluster

(e.g., the set of all other sequences that start with the Select All event: {(Select All,

Cut), (Select All, Clear)}). If the ratio of the complementary cluster size divided by

the analyzed cluster size is smaller than a predetermined fixed percentage, and is

unique according to a predetermined criterion, then the prefix is used as a predictive

trigger for the rest of the sequence pattern. Thus the trigger is used to convert the

fact into an if-then form where the if part is the set of conditions in the prefix and

the then part is the set of conditions in the rest of the pattern. Depending upon the

domain, the then part can be interpreted as an action to be taken or a conclusion to

be made, or it can be used as a rule in a rule-based system.

Figure 8. Event processing in the learning engine.

SesameÐ A Learning Agent Engine 409

During attribute analysis, the learning engine examines the sequences in a

cluster on an attribute-by-attribute basis. The values of a given attribute are com-

pared to determine if a suitable attribute template can be generated for the attribute

type definition. User-defined distance functions and comparison operators are used

during this process. The order in which the engine learns the values for the attribute

is summarized below.

Learn an exact value for the attribute:

· If the attribute behavior is Crisp, then an attribute template is learned if a

predetermined percentage of the attributes have the same value.

· If the attribute behavior is fuzzy, the distance and comparison functions are used

for learning. A fuzzy value signifies a predetermined percentage of the values’

distance to the median is less than a fixed threshold.

· If an exact value cannot be learned, then the engine tries to learn a range using

the specified distance functions and range widths.

· If an exact value or range for an attribute cannot be learned, then the engine tries

to learn an object template such that a fixed percentage of the object values satisfy

the template. This process recursively tries to learn the values of the attributes of

the objects, attribute by attribute.

The facts generated by the learning engine are interpreted by predefined

domain-dependent rules. The main objective of fact interpretation is to validate,

maintain, and decide on the course of action for facts. The validation typically

involves filtering out trivial facts (similar to ignoring ª the,º ª a,º etc., in document

filtering) and those determined inappropriate for the domain (e.g., repeated user

mistakes such as {(copy document A, delete copy of document A), . . . }). In addition,

the fact interpretation involves knowledge maintenance functions.

Figure 9. Cluster analysis steps.

410 A. Caglayan et al.

The development of a knowledge base inference mechanism for an inference

agent consists of

· encapsulating application domain knowledge into rules,

· determining rules for validating agent instructions, and

· figuring out rules that specify the execution schedule.

The selection of an application to incorporate the functionality of the learning

engine requires a user study. Such a study should evaluate the trade-offs between

· in-house versus third-party application

· real-time versus non-real-time application

· large versus small event dictionary

· hourly versus daily versus weekly versus monthly patterns

· high- versus low-frequency repetitive user behavior

· individualized versus homogeneous repetitive behavior

· multiuser versus single-user platform

The user study should attempt to determine the degree of fit of the application

to an interface agent metaphor. For instance, to determine the potential return on the

deployment of a mail agent, it is advisable to determine the average number of hours

spent on reading and filing mail messages and the number of repetitive steps

performed in filing mail messages.

CONC LUSIONS AND AREAS FOR FUTURE RESEARC H

A wise business person once said, ª Customers never tell you about problems

you do not already know. W hat customers do tell you is how to prioritize your

problems.º While this is certainly true for issues such as the task-specific abilities

of Open Sesame! 1.0 (it came as no surprise that customers wanted to be able to

automate practically everything), it was more interesting to witness the level of

disagreement between users with varying skill levels and organizational styles on

issues like the desired frequency and timing of interaction.

Such conflicting feedback led us to the conclusion that despite our intentions to

make Open Sesame! as simple as possible to use, the user must still be given a fair

amount of control over the agent’ s social and communication skills. Giving users

the ability to directly control agent interaction and monitor a significant number of

new events increased the functionality and intelligence of the product at the cost of

increased complexity, size, and time to market.

An important area that we have addressed only partly in version 2.0 is the user’ s

work style. It is clear that the optimum form of social and communication skills for

an agent is a function of the user’ s level of expertise. However, it also seems that

SesameÐ A Learning Agent Engine 411

knowing the user’ s level of expertise is not sufficient; factors like the user’ s style of

file management are also important.

Finally, our Open Sesame! 2.0 effort taught us that agents as stand-alone entities

must wait for the development of infrastructures that support such agents. Currently,

the best way to incorporate agent functionality into an application is to integrate a

learning engine into the application with the active cooperation of the application

developer. Such integration can enable third-party applications to provide automat-

ion and in-context coaching and to customize user preferences. One of the more

promising applications of learning agents is the customization of Web sites based

on the learned preferences of users. The use of our learning engine on Web servers

to provide customized content delivery is one of our current research projects.

REFERENC ES

Caglayan, A. K., and M. Snorrason. 1993. On the relationship between the generalized equality classifier and ART2

neural networks. Presented at World Congress on Neural Networks, Portland, Oregon.

Carpenter, G. A., S. Grossberg, and D. B. Rosen. 1991. ART2-A: An adaptive resonance algorithm for rapid

category learning and recognition. Neural Networks 4:493±504.

Kumar, K. 1996. Sm arts by Open Sesame!Ð Conceptual overview. Charles River Analytics technical report,

Cam bridge , M ass. (A cop y can be d ow nloaded from w ww .op ensesame .c om/products/sm arts/

sm artswhitepaper.html.)

Laurel, B. 1990. The art of human-computer interface design. Reading, Mass.: Addison-Wesley.

Liebowitz, J. 1993. Roll your own hybrids. BYTE (July).

Maes, P., and R. Kozierok. 1993. Learning interface agents. Presented at the International Workshop on Intelligent

User Interfaces, Orlando, Fla.

Mazzu, J. M., S. M. Allen, and A. K. Caglayan. 1991. Neural network/knowledge based systems for sm art structures.

Presented at Materials and Adaptive Structures Conference, Alexandria, Va.

Mazzu, J. M., M. S. Snorrason, and A. K. Caglayan. 1994. A hybrid intelligence engine for nuclear monitoring.

Department of Energy Contract DE-FG02-ER81178.

Nass, C. I., J. S. Steuer, and E. Tauber. 1993. Computers are social actors. Presented at the CHI Conference, Boston,

Mass.

Norman, T. J., and D. Long. 1994. Goal creation in motivated agents. London, UK: University College London.

Snorrason, M., and A. K. Caglayan. 1994. Generalized ART2 algorithms. Presented at World Congress on Neural

Networks, San Diego, Calif.

412 A. Caglayan et al.

